Physics and Chemistry of Minerals

, Volume 45, Issue 3, pp 219–226 | Cite as

Compressibility and reversible amorphization of thaumasite Ca3Si(OH)6(CO3)(SO4)·12H2O pressurized in methanol–ethanol–H2O up to 5 GPa

  • A. Yu. Likhacheva
  • S. N. Dementiev
  • S. V. Goryainov
Original Paper


The elastic and structure behavior of natural thaumasite compressed in methanol–ethanol–H2O up to 5 GPa was studied by synchrotron powder diffraction with a diamond anvil cell. In the pressure range between 0.0001 and 4.5 GPa, the compression is regular and slightly anisotropic, with a more rigid ab-plane coinciding with the orientation of hydrogen bonds and S–O, C–O bonds in anion groups. The corresponding bulk moduli derived from the third-order Birch–Murnaghan EoS fit are K a = 43(2), K c = 35(2), K T = 39(2) GPa. Rietveld refinements reveal some general features of the structure evolution of thaumasite, which are consistent with the observed elastic anisotropy. The compression within the ab-plane proceeds mainly at the expense of shortening of hydrogen bonds and much lesser decrease of C–O and S–O bonds. In the range of 0.0001–3 GPa the Ca–O polyhedra contract more rapidly along the c-axis as compared to the ab-plane. At about 5 GPa, thaumasite undergoes a reversible transformation to an amorphous phase. The observed behavior differs drastically with that studied previously using helium as the pressure medium, which suggests the effect of He penetration increasing the structure stiffness. Without helium support, the thaumasite structure is preserved only up to 4.5 GPa.


Thaumasite High pressure Compressibility Amorphization Powder diffraction Synchrotron radiation 



The authors thank Prof. Yu.V. Seryotkin for the valuable discussion of the material, as well as we thank anonymous reviewers for their useful comments. This study is supported by the state assignment project (0330-2016-0004) and Russian Foundation of Basic Researches (Grant 15-55-45070). Diffraction experiments were carried out involving the equipment belonging to the Siberian Synchrotron and Terahertz Radiation Centre (SSTRC). The work was performed in part within the project 14.B25.31.0032 (the Ministry of Education and Science of Russian Federation).


  1. Ancharov AI, Manakov AYu, Mezentsev NA, Tolochko BP, Sheromov MA, Tsukanov VM (2001) New station at the 4th beamline of the VEPP-3 storage ring. Nucl Instrum Methods Phys Res A 470:80–83. doi: 10.1016/S0168-9002(01)01029-4 CrossRefGoogle Scholar
  2. Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229(5):405–419. doi: 10.1515/zkri-2013-1711 Google Scholar
  3. Ardit M, Cruciani G, Dondi M, Garbarino GL, Nestola F (2014) Phase transitions during compression of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O: a high-pressure synchrotron powder X-ray diffraction study. Miner Mag 8:1193–1208. doi: 10.1180/minmag.2014.078.5.07 CrossRefGoogle Scholar
  4. Clark SM, Colas B, Kunz M, Speziale S, Monteiro PJM (2008) Effect of pressure on the crystal structure of ettringite. Cement Concrete Res 38:19–26. doi: 10.1016/j.cemconres.2007.08.029 CrossRefGoogle Scholar
  5. Crammond N (1985) Thaumasite in failed cement mortars and renders from exposed brickwork. Cement Concrete Res 15:1039–1050CrossRefGoogle Scholar
  6. Datchi F, LeToullec R, Loubeyre P (1997) Improved calibration of the SrB4O7: Sm2+ optical pressure gauge: advantages at very high pressures and high temperatures. J Appl Phys 81:3333–3339. doi: 10.1063/1.365025 CrossRefGoogle Scholar
  7. Edge RA, Taylor FW (1971) Crystal structure of thaumasite, [Ca3Si(OH)6·12H2O](SO4)(CO3). Acta Cryst B27:594–601CrossRefGoogle Scholar
  8. Effenberger H, Kirfel A, Will G, Zobetz E (1983) A further refinement of the crystal structure of thaumasite, Ca3Si(OH)6CO3SO4·12H2O. Neu Jahrb Miner Monatsh 2:60–68Google Scholar
  9. Fursenko BA, Litvin YA, Kropachev VD (1984) Apparatus with transparent anvils-windows for optical and X-ray studies at high pressures. Prib Tech Exp 5:174–178(in Russian) Google Scholar
  10. Gatta GD, Boffa Ballaran T (2004) New insight into the crystal structure of orthorhombic edingtonite: evidence for a split Ba site. Miner Mag 68:167–175. doi: 10.1180/0026461046810178 CrossRefGoogle Scholar
  11. Gatta GD, McIntyre GJ, Swanson JG, Jacobsen SD (2012) Minerals in cement chemistry: a single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. Am Miner 97:1060–1069. doi: 10.2138/am.2012.4058 CrossRefGoogle Scholar
  12. Goryainov SV (2016) Raman study of thaumasite Ca3Si(OH)6(SO4)(CO3)·12H2O at high pressure. J Raman Spectr 47:984–992. doi: 10.1002/jrs.4936 CrossRefGoogle Scholar
  13. Gross S (1977) The mineralogy of the Hatrurim Formation, Israel. Geol Surv Israel Bull 70:1–80Google Scholar
  14. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press Res 14:235–248CrossRefGoogle Scholar
  15. Hobbs DW, Taylor MG (2000) Nature of the thaumasite sulphate attack mechanism in field concrete. Cement Concrete Res 30:529–533CrossRefGoogle Scholar
  16. Jacobsen SD, Smyth JR, Swope RJ (2003) Thermal expansion of hydrated six-coordinate silicon in thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. Phys Chem Miner 30:321–329. doi: 10.1007/s00269-003-0328-0 CrossRefGoogle Scholar
  17. Knill DC, Young BR (1960) Thaumasite from Co., Down, Northern Ireland. Miner Mag 32:416–418CrossRefGoogle Scholar
  18. Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR 86–748Google Scholar
  19. Likhacheva AYu, Goryainov SV, Bul’bak TA (2013) An X-ray diffraction study of the pressure-induced hydration in cordierite at 4–5 GPa. Am Miner 98:181–186. doi: 10.2138/am.2013.4199 CrossRefGoogle Scholar
  20. Martinez I, Sanchez-Valle C, Daniel I, Reynard B (2004) High-pressure and high-temperature Raman spectroscopy of carbonate ions in aqueous solution. Chem Geol 207:47–58. doi: 10.1016/j.chemgeo.2004.02.003 CrossRefGoogle Scholar
  21. Martucci A, Cruciani G (2006) In situ time resolved synchrotron powder diffraction study of thaumasite. Phys Chem Miner 33:723–731. doi: 10.1007/s00269-006-0124-8 CrossRefGoogle Scholar
  22. Piminov PA, Baranov GN, Bogomyagkov AV, Berkaev DE, Borin VM, Dorokhov VL, Karnaev SE, Kiselev VA, Levichev EB, Meshkov OI, Mishnev SI, Nikitin SA, Nikolaev IB, Sinyatkin SV, Vobly PD, Zolotarev KV, Zhuravlev AN (2016) Synchrotron radiation research and application at VEPP-4. Phys Proc 84:19–26. doi: 10.1016/j.phpro.2016.11.005 CrossRefGoogle Scholar
  23. Rashchenko SV, Likhacheva AYu, Bekker TB (2013) Preparation of a macrocrystalline pressure calibrant SrB4O7: Sm2+ suitable for the HP-HT powder diffraction. High Press Res 33:720–724. doi: 10.1080/08957959.2013.819098 CrossRefGoogle Scholar
  24. Shen G, Mei Q, Prakapenka VB, Lazor P, Sinogeikin S, Meng Y, Park C (2011) Effect of helium on structure and compression behavior of SiO2 glass. PNAS 108(15):6004–6007. doi: 10.1073/pnas.1102361108 CrossRefGoogle Scholar
  25. Speziale S, Jiang F, Mao Z, Monteiro PJM, Wenk H-R, Duffy TS, Schilling FR (2008) Single crystal elastic constants of natural ettringite. Cement Concrete Res 38:885–889. doi: 10.1016/j.cemconres.2008.02.004 CrossRefGoogle Scholar
  26. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34(2):210–213. doi: 10.1107/S0021889801002242 CrossRefGoogle Scholar
  27. Wunder B, Jahn S, Koch-Muller M, Speziale S (2012) The 3.65 A phase, MgSi(OH)6: structural insights from DFT-calculations and T-dependent IR spectroscopy. Am Miner 97:1043–1048. doi: 10.2138/am.2012.4022 CrossRefGoogle Scholar
  28. Yang H, Prewitt CT, Frost DJ (1997) Crystal structure of the dense hydrous magnesium silicate, phase D. Am Miner 82:651–654CrossRefGoogle Scholar
  29. Zhang FC, Ma BG, Yin G, Wu YY, Zhu YC (2009) Preparation and performance of sulfate resistance cement-based material. Key Eng Mater 400:195–201Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.V.S. Sobolev Institute of Geology and MineralogySiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.G.I. Budker Institute of Nuclear PhysicsSiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations