Skip to main content

Advertisement

Log in

Migration of impurity level reflected in the electrical conductivity variation for natural pyrite at high temperature and high pressure

  • Review Article
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

This report presents the variations of the electrical conductivity and the migration of natural pyrite impurity levels at temperatures range from 298 to 573 K and pressures range from 1 atm. to 20.9 GPa. The electrical conductivity increases with temperature at a fixed pressure, displaying the semiconductor behavior of the sample. In spite of the positive correlations of electrical conductivity and pressure, there exists an acceleration in the rate of conductivity increase after ~13 GPa. No indication of a chemical reaction or structural phase transition of pyrite was detected by Raman spectroscopy. The main trace elements that affect the electrical properties of pyrite are determined by inductively coupled plasma with mass spectrometry (ICPMS). The transport activation energy of natural pyrite is ~0.045 eV at ambient pressure, which corresponds to the activation of the CoFe donor level (~1/2 E D), and decreases with increasing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraitis P, Pattrick R, Vaughan D (2004) Variations in the compositional, textural and electrical properties of natural pyrite: a review. Int J Miner Process 74:41–59

    Article  Google Scholar 

  • Ahrens T, Jeanloz R (1987) Pyrite: shock compression, isentropic release, and composition of the Earth’s core. J Geophys Res Solid Earth 92:10363–10375

    Article  Google Scholar 

  • Cervantes P, Slanic Z, Bridges F, Knittle E, Williams Q (2002) The band gap and electrical resistivity of FeS2-pyrite at high pressures. J Phys Chem Solids 63:1927–1933

    Article  Google Scholar 

  • Chattopadhyay T, Schnering H (1985) High pressure X-ray diffraction study on p-FeS2, m-FeS2 and MnS2 to 340 kbar: a possible high spin-low spin transition in MnS2. J Phys Chem Solids 46:113–116

    Article  Google Scholar 

  • Chen A, Yu P, Taylor R (1993) Closure of the charge-transfer energy gap and metallization of NiI2 under pressure. Phys Rev Lett 71:4011–4014

    Article  Google Scholar 

  • Clendenen R, Drickamer H (1966) Lattice parameters of nine oxides and sulfides as a function of pressure. J Chem Phys 44:4223–4228

    Article  Google Scholar 

  • Dai L, Li H, Hu H, Jiang J, Hui K, Shan S (2013) Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics 608:1086–1093

    Article  Google Scholar 

  • Dai L, Hu H, Li H, Wu L, Hui K, Jiang J, Sun W (2016a) Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications. Geochem Geophys Geosyst 17:2394–2407

    Article  Google Scholar 

  • Dai L, Wu L, Li H, Hu H, Zhuang Y, Liu K (2016b) Evidence of the pressure-induced conductivity switching of yttrium-doped SrTiO3. J Phys Condens Matter 28:475501. doi:10.1088/0953-8984/28/47/475501

    Article  Google Scholar 

  • Dai L, Wu L, Li H, Hu H, Zhuang Y, Liu K (2016c) Pressure-induced phase-transition and improvement of the micro dielectric properties in yttrium-doped SrZrO3. EPL (Europhysics Letters) 114:56003. doi:10.1209/0295-5075/114/56003

    Article  Google Scholar 

  • Delasheras C, Ferrer I, Sanchez C (1994) Temperature dependence of the optical absorption edge of pyrite FeS2 thin films. J Phys Condens Matter 6:10177–10183

    Article  Google Scholar 

  • Ennaoui A, Tributsch H (1986) Energetic characterization of the photoactive FeS2 (pyrite) interface. Solar Energy Mater 14:461–474

    Article  Google Scholar 

  • Ennaoui A, Fiechter S, Pettenkofer C, Alonso V, Büker K (1993) Iron disulfide for solar energy conversion. Sol Energy Mater Sol Cells 29:289–370

    Article  Google Scholar 

  • Ferrer I, Nevskaia D, Delasheras C, Sánchez C (1990) About the band gap nature of FeS2 as determined from optical and photoelectrochemical measurements. Solid State Commun 74:913–916

    Article  Google Scholar 

  • Jephcoat A, Olson P (1987) Is the inner core of the Earth pure iron? Nature 325:332–335

    Article  Google Scholar 

  • Karguppikar A, Vedeshwar A (1988) Electrical and optical properties of natural iron pyrite (FeS2). Phys Status Solidi A Appl Res 109:549–558

    Article  Google Scholar 

  • Kleppe A, Jephcoat A (2004) High-pressure Raman spectroscopic studies of FeS2 pyrite. Miner Mag 68:433–441

    Article  Google Scholar 

  • Lehner S, Savage K, Ayers J (2006) Vapor growth and characterization of pyrite (FeS2) doped with Co, Ni, and As: variations in semiconducting properties. J Cryst Growth 286:306–317

    Article  Google Scholar 

  • Lehner S, Newman N, Van S, Bandyopadhyay S, Savage K, Buseck P (2012) Defect energy levels and electronic behavior of Ni-, Co-, and As-doped synthetic pyrite (FeS2). J Appl Phys 111:083717. doi:10.1063/1.4706558

    Article  Google Scholar 

  • Li H, Zhang S (2005) Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities. Chin J Geophys 48:1384–1391

    Google Scholar 

  • Li M, Gao C, Ma Y, Li Y, Li X, Li H, Liu J, Hao A, He C, Huang X, Zhang D, Yu C (2006) New diamond anvil cell system for in situ resistance measurement under extreme conditions. Rev Sci Instrum 77:123902. doi:10.1063/1.2400669

    Article  Google Scholar 

  • Merkel S, Jephcoat A, Shu J, Mao H, Gillet P, Hemley R (2002) Equation of state, elasticity, and shear strength of pyrite under high pressure. Phys Chem Miner 29:1–9

    Article  Google Scholar 

  • Pommier A, Gaillard F, Malki M, Pichavant M (2010) Methodological re-evaluation of the electrical conductivity of silicate melts. Am Miner 95:284–291

    Article  Google Scholar 

  • Pridmore D, Shuey R (1976) The electrical resistivity of galena, pyrite, and chalcopyrite. Am Miner 61:248–259

    Google Scholar 

  • Ravindra N, Srivastava V (1981) Temperature-dependence of the energy-gap in pyrite (FeS2). Phys Status Solidi A Appl Res 65:737–742

    Article  Google Scholar 

  • Savage K, Stefan D, Lehner S (2008) Impurities and heterogeneity in pyrite: influences on electrical properties and oxidation products. Appl Geochem 23:103–120

    Article  Google Scholar 

  • Sawaoka A, Inoue K, Saito S (1974) Effect of high pressure on the lattice constants of FeS2 and CoS2 having pyrite s tructure. Jpn J Appl Phys 13:579–579

    Article  Google Scholar 

  • Schieck R, Hartmann A, Fiechter S, Könenkamp R, Wetzel H (1990) Electrical properties of natural and synthetic pyrite (FeS2) crystals. J Mater Res 5:1567–1572

    Article  Google Scholar 

  • Sze S, Kwok K (2007) Physics of semiconductor devices, 3rd edn. Wiley, New York, pp 21–22

    Google Scholar 

  • Utyuzh A (2014) Influence of temperature on Raman spectra of the FeS2 single crystal with pyrite structure. Phys Solid State 56:2050–2055

    Article  Google Scholar 

  • Wu L, Dai L, Li H, Zhuang Y, Liu K (2016) Pressure-induced improvement of grain boundary properties in Y-doped BaZrO3. J Phys D Appl Phys 49:345102. doi:10.1088/0022-3727/49/34/345102

    Article  Google Scholar 

  • Wu L, Dai L, Li H, Hu H, Zhuang Y, Liu K (2017) Anomalous phase transition of Bi-doped Zn2GeO4 investigated by electrical conductivity and Raman spectroscopy under high pressure. J Appl Phys 121:125901. doi:10.1063/1.4979311

    Article  Google Scholar 

  • Yu J, Wu C, Huang Y, Lin S (1992) Electron-paramagnetic-resonance study of the Cr3+ and Ni2+ ions and the (SCl)2− defect in FeS2. J Appl Phys 71:370–375

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editor of Larissa Dobrzhinetskaya and two anonymous reviewers for their very valuable and enlightened comments and suggestions in the reviewing process, which greatly improve the manuscript. We are also grateful to Springer Nature Author Services (SNAS) for their professional helps in English improvements of the manuscript. This research was financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB 18010401), Key Research Program of Frontier Science of CAS (QYZDB-SSW-DQC009), “135” Program of the Institute of Geochemistry of CAS, Hundred Talents Program of CAS, NSF of China (41474078, 41304068 and 41174079) and the special fund of the West Light Foundation of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Dai, L., Li, H. et al. Migration of impurity level reflected in the electrical conductivity variation for natural pyrite at high temperature and high pressure. Phys Chem Minerals 45, 85–92 (2018). https://doi.org/10.1007/s00269-017-0904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0904-3

Keywords

Navigation