Skip to main content
Log in

Composition–thermal expandability relations and oxidation processes in tourmaline studied by in situ Raman spectroscopy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

An Erratum to this article was published on 19 August 2017

This article has been updated

Abstract

The crystal chemistry of tourmaline, XY3Z6(T6O18)(BO3)3V3W, has a strong influence on the structure and physical properties. Since tourmalines occur in a wide range of geological settings and have large temperature and pressure stability fields, the understanding of the relation between the tourmaline chemistry and thermal expansion allows for better thermodynamic modeling of geological processes. Here, we report dynamic and static thermal expansions as well as mode Grüneisen parameters studied by Raman spectroscopy and single-crystal X-ray diffraction data on several tourmaline species. In addition, oxidation processes in fluor-schorl and Fe2+-bearing elbaite were followed by Raman spectroscopy. Our results emphasize the role of Y-/Z-site occupancy disorder to reduce the local strains and demonstrate that small-size octahedrally coordinated cations perturb the topology of the SiO4 rings, which in turn seems to enhance the anisotropic thermal-expansion response. In addition, it is shown that the temperature-dependent behavior of the VOH modes primarily depends on the occupancy of the Y site, whereas that of the WOH modes depends on the occupancy of the X site. High-temperature Raman experiments in air allowed to follow the oxidation of Fe2+ to Fe3+ in fluor-schorl by analyzing both the framework and OH-stretching phonon modes. It is further demonstrated that under the same conditions, no oxidation of iron is observed for Fe2+-bearing elbaite, which implies that at high oxygen fugacity, iron is only oxidized in tourmaline species with prevalent divalent cations at the Y site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 19 August 2017

    An erratum to this article has been published.

References

  • Bloodaxe ES, Hughes JM, Dyar MD, Grew ES, Guidotti CV (1999) Linking structure and chemistry in the schorl-dravite series. Am Miner 84:922–928

    Article  Google Scholar 

  • Bosi F, Lucchesi S (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. Am Miner 92:1054–1063

    Article  Google Scholar 

  • Bosi F, Skogby H (2013) Oxy-dravite, Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Miner 98:1442–1448

    Article  Google Scholar 

  • Bosi F, Andreozzi GB, Federico M, Graziani G, Lucchesi S (2005) Crystal chemistry of the elbaite-schorl series. Am Mineral 90:1784–1792

    Article  Google Scholar 

  • Bosi F, Balić-Žunić T, Surour AA (2010) Crystal structure analyses of four tourmaline specimens from the Cleopatra’s Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in the tourmaline group. Am Miner 95:510–518

    Article  Google Scholar 

  • Bosi F, Skogby H, Agrosì G, Scandale E (2012) Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Pietro in Campo, island of Elba, Italy. Am Miner 97:989–994

    Article  Google Scholar 

  • Bosi F, Reznitskii L, Skogby H, Hålenius U (2014) Vanadio-oxy-chromium-dravite, NaV3(Cr2Mg4)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Miner 99:1155–1162

    Article  Google Scholar 

  • Bosi F, Andreozzi GB, Hålenius U, Skogby H (2015a) Experimental evidence for partial Fe2+ disorder at the Y and Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl. Miner Mag 79:515–528

    Article  Google Scholar 

  • Bosi F, Skogby H, Lazor P, Reznitskii L (2015b) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Phys Chem Miner 42:441–453

    Article  Google Scholar 

  • Bosi F, Skogby H, Hålenius U (2016) Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications. Contrib Miner Petr 171:47

    Article  Google Scholar 

  • Bosi F, Skogby H, Ciriotti ME, Gadas P, Novák M, Cempírek J, Všianský D, Filip J (2017) Lucchesiite, CaFe3 2+Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Miner Mag 81:1–14

    Article  Google Scholar 

  • Chopelas A (2000) Thermal expansivity of mantle relevant magnesium silicates derived from vibrational spectroscopy at high pressure. Am Miner 85:270–278

    Article  Google Scholar 

  • Della Ventura G, Susta U, Bellatreccia F, Marcelli A, Redhammer GJ, Oberti R (2017) Deprotonation of Fe-dominant amphiboles: single-crystal HT-FTIR spectroscopic studies of synthetic potassic-ferro-richterite. Am Miner 102:117–125

    Article  Google Scholar 

  • Donney G (1977) Structural meachnism of pyroelectricity in tourmaline. Acta Crystall A33:927–932

    Article  Google Scholar 

  • Donney G, Barton R Jr (1972) Refinement of the crystal structure of elbaite and the mechanism of tourmaline solid solution. Tscher Miner Petrog 18:273–286

    Article  Google Scholar 

  • Ertl A, Hughes JM, Prowatke S, Ludwig T, Prasad PSR, Brandstaetter F, Koerner W, Schuster R, Pertlik F, Marschall H (2006) Tetrahedrally coordinated boron in tourmalines from the liddicoatite-elbaite series from Madagascar: structure, chemistry and infrared spectroscopic studies. Am Miner 91:1847–1856

    Article  Google Scholar 

  • Ertl A, Baksheev IA, Giester G, Lengauer CL, Prokofiev VY, Zorina LD (2016) Bosiite, NaFe3 3+(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new ferric member of the tourmaline supergroup from the Darasun gold deposit, Transbaikalia, Russia. Eur J Miner 28:581–591

    Article  Google Scholar 

  • Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Iron redox reactions in the tourmaline structure: high-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86:239–256

    Article  Google Scholar 

  • Gasharova B, Mihailova B, Konstantinov L (1997) Raman spectra of various types of tourmaline. Eur J Miner 9:935–940

    Article  Google Scholar 

  • Gavrilova ND, Maksimov EG, Novik VK, Drozhdin SN (1989) The low-temperature behavior of the pyroelectic coefficient. Ferroelectrics 100:223–240

    Article  Google Scholar 

  • Gonzalez-Carreño T, Fernández M, Sanz J (1988) Infrared and electron microprobe analysis of tourmalines. Phys Chem Miner 15:452–460

    Article  Google Scholar 

  • Hawkins KD, MacKinnon IDR, Schneeberger H (1995) Influence of chemistry on the pyroelectric effect in tourmaline. Am Miner 80:491–501

    Article  Google Scholar 

  • Hawthorne FC (1996) Structural mechanisms for light-element variations in tourmaline. Can Miner 34:123–132

    Google Scholar 

  • Hawthorne FC, Lussier AJ, Ball NA, Henry DJ, Shimizu R, Ogasawara Y, Ota T (2016) Maruyamaite, K(MgAl2)(Al5Mg) Si6O18(BO3)3(OH)3O, from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: description and crystal structure. Am Miner 101:355–361

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anvitz LM (eds) Boron: mineralogy, petrology and geochemistry, Reviews in mineralogy and geochemistry, vol 33. Mineralogical Society of America, Chantilly, pp 503–557

    Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Miner 96:895–913

    Article  Google Scholar 

  • Hofmeister AM, Chopelas A (1991) Vibrational spectroscopy of end-member silicate garnets. Phys Chem Miner 17:503–526

    Article  Google Scholar 

  • Hofmeister AM, Mao H-K (2002) Redefinition of the mode Grüneisen parameter for polyatomic substances and thermodynamic implications. P Natl Acad Sci USA 99:559–564

    Article  Google Scholar 

  • Hunklinger S (2009) Festkörperphysik, 2nd edn. Oldenbourg Wissenschaftsverlag GmbH, p 230

  • Krishnan RS, Srinivasan R, Devanarayanan S (1979) Thermal expansion of crystals. Pergamon, Oxford, p 162

    Google Scholar 

  • Kuzmany H (2009) Solid-state spectroscopy—an introduction. Springer, Berlin, p 554

    Book  Google Scholar 

  • Leissner L, Schlüter J, Horn I, Mihailova B (2015) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles. Am Miner 100:2682–2694

    Article  Google Scholar 

  • Lensing-Burgdorf M, Watenphul A, Schlüter J, Mihailova B (2017) Crystal chemistry of tourmalines from erongo mountains, namibia, studied by raman spectroscopy. Eur J Miner. doi:10.1127/ejm/2017/0029-2607

    Google Scholar 

  • Mernagh TP (1991) Use of the laser Raman microprobe for discrimination amongst feldspar minerals. J Raman Spectrosc 22:453–457

    Article  Google Scholar 

  • Mihailova B, Gasharova B, Konstantinov L (1996) Influence on non-tetrahedral cations in Si–O vibrations in complex silicates. J Raman Spectrosc 27:829–833

    Article  Google Scholar 

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  • Nishio-Hamane D, Minakawa T, Yamaura J, Oyama T, Ohnishi M, Shimobayashi N (2014) Adachiite, a Si-poor member of the tourmaline supergroup from the Kiura mine, Oita Prefecture, Japan. J Miner Petro Sci 109:74–78

    Article  Google Scholar 

  • Pandey CS, Schreuer J (2012) Elastic and piezoelectric constants of tourmaline single crystals at non-ambient temperatures determined by resonant ultrasound spectroscopy. J Appl Phys 111:013516

    Article  Google Scholar 

  • Pieczka A (2000) Modelling of some structural parameters of tourmalines on the basis of their chemical composition. I. Ordered structure model. Eur J Miner 12:589–596

    Article  Google Scholar 

  • Pieczka A, Kraczka J (2004) Oxidized tourmalines—a combined chemical, XRD and Mössbauer study. Eur J Miner 16:309–321

    Article  Google Scholar 

  • Porto SPS, Scott JF (1967) Raman spectra of CaWO4, SrWO4, CaMoO4 and SrMoO4. Phys Rev 157:716–717

    Article  Google Scholar 

  • Schreurs AMM, Xian X, Kroon-Batenburg LMJ (2010) EVAL15: a diffraction data integration method based on ab initio predicted profiles. J Appl Crystallogr 43:70–82

    Article  Google Scholar 

  • Tatli A, Pavlovic AS (1988) Thermal expansion of tourmaline single crystals from 80 to 300 K. Phys Rev B 38:10072

    Article  Google Scholar 

  • Tokiwai K, Nakashima S (2010) Integral molar absorptivities of OH in muscovite at 20 to 650 °C by in situ high-temperature IR microspectroscopy. Am Miner 95:1052–1059

    Article  Google Scholar 

  • Wang A, Jolliff BL, Haskin LA, Kuebler KE, Viskupic KM (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am Miner 86:90–806

    Google Scholar 

  • Watenphul A, Burgdorf M, Schlüter J, Horn I, Malcherek T, Mihailova B (2016a) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. Am Miner 101:970–985

    Article  Google Scholar 

  • Watenphul A, Schlüter J, Bosi F, Skogby H, Malcherek T, Mihailova B (2016b) Influence of the octahedral cationic-site occupancies on the framework vibrations of Li-free tourmalines, with implications for estimating temperature and oxygen fugacity in host rocks. Am Miner 101:2554–2563

    Article  Google Scholar 

  • Yavuz F, Karakaya N, Yıldırım DK, Karakaya MÇ, Kumral M (2014) A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011). Comput Geosci 63:70–87

    Article  Google Scholar 

  • Zhao C-C, Liao L-B, Xing J (2014) Correlation between intrinsic dipole moment and pyroelectric coefficients of Fe-Mg tourmaline. Int J Min Met Mater 21:105–112

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft DFG (MI 1127/7-1 and SCHL 549/6-1) is gratefully acknowledged. The authors thank P. Stutz for sample preparation, S. Heidrich for conducting electron microprobe analysis, and M. Lensing-Burgdorf for help with the Raman spectroscopic measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anke Watenphul or Boriana Mihailova.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s00269-017-0914-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watenphul, A., Malcherek, T., Wilke, F.D.H. et al. Composition–thermal expandability relations and oxidation processes in tourmaline studied by in situ Raman spectroscopy. Phys Chem Minerals 44, 735–748 (2017). https://doi.org/10.1007/s00269-017-0894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0894-1

Keywords

Navigation