Skip to main content

Advertisement

Log in

Thermoelastic properties of grossular–andradite solid solution at high pressures and temperatures

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The pressure–volume–temperature (PVT) equation of state (EoS) of synthetic grossular (Grs)–andradite (And) solid-solution garnet sample have been measured at high temperature up to 900 K and high pressures up to 22.75 GPa for Grs50And50, by using in situ angle-dispersive X-ray diffraction and diamond anvil cell. Analysis of room-temperature PV data to a third-order Birch–Murnaghan (BM) EoS yields: V 0 = 1706.8 ± 0.2 Å3, K 0 = 164 ± 2 GPa and K′ 0 = 4.7 ± 0.5. Fitting of our PVT data by means of the high-temperature third-order BM EoS gives the thermoelastic parameters: V 0 = 1706.9 ± 0.2 Å3, K 0 = 164 ± 2 GPa, K′ 0 = 4.7 ± 0.2, (∂K/∂T) P  = −0.018 ± 0.002 GPa K−1, and α 0 = (2.94 ± 0.07) × 10−5 K−1. The results also confirm that grossular content increases the bulk modulus of the Grs-And join following a nearly ideal mixing model. The relation between bulk modulus and Grs mole fraction (X Grs) in this garnet join is derived to be K 0 (GPa) = (163.7 ± 0.7) + (0.14 ± 0.02) X Grs (R 2 = 0.985). Present results are also compared to previously studies determined the thermoelastic properties of Grs-And garnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12–Mg3Al2Si3O12 and Fe4Si4O12–Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 15:90–106

    Article  Google Scholar 

  • Anderson OL (1995) Equation of state of solids for geophysics and ceramic science. Oxford University Press, New York, pp 243–274

    Google Scholar 

  • Anderson DL, Bass JD (1984) Mineralogy and composition of the upper mantle. Geophys Res Lett 11:637–640

    Article  Google Scholar 

  • Angel R (2000) Equation of state. Rev Miner Geochem 41:35–60

    Article  Google Scholar 

  • Arimoto T, Gréaux S, Irifune T, Zhou CY, Higo Y (2015) Sound velocities of Fe3Al2Si3O12 almandine up to 19 GPa and 1700 K. Phys Earth Plant Int 246:1–8

    Article  Google Scholar 

  • Bass JD (1986) Elasticity of uvarovite and andradite garnets. J Geophys Res 91:7505–7516

    Article  Google Scholar 

  • Bass JD, Liebermann RC, Weidner DJ, Finch SJ (1981) Elastic properties from acoustic and volume compression experiments. Phys Earth Plant Inter 25:140–158

    Article  Google Scholar 

  • Birch F (1986) Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high temperature domain. J Geophys Res 83:1257–1268

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussmann J (1992) An introduction to the rock-forming minerals. Wiley, New York

    Google Scholar 

  • Du W, Clark S, Walker D (2015) Thermo-compression of pyrope-grossular garnet solid solutions: non-linear compositional dependence. Am Miner 100:215–222

    Article  Google Scholar 

  • Duffy TS, Anderson DL (1989) Seismic velocity in mantle minerals and mineralogy of the upper mantle. J Geophys Res 94:1895–1912

    Article  Google Scholar 

  • Dymshits AM, Litasov KD, Shatskiy A, Sharygin IS, Ohtani E, Suzuki A, Pokhilenko NP, Funakoshi K (2014) PVT equation of state of Na-majorite to 21 GPa and 1673 K. Phys Earth Plant Inter 227:68–75

    Article  Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. In: Skinner BJ (ed) Economic geology (75th anniversary volume). The Economic Geology Publishing Company, pp 317–391

  • Essene EJ (1989) The current status of thermobarometry in metamorphic rocks. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts, Vol 43, Geological Society Special Publication, p 1–44

  • Evans BW, Trommsdorff V, Richter W (1979) Petrology of an eclogite-metarodingite suite at Clima di Gagnone, Ticino, Switzerland. Am Miner 64:15–31

    Google Scholar 

  • Fan DW, Zhou WG, Wei SY, Liu YG, Ma MN, Xie HS (2010) A simple external resistance heating diamond anvil cell and its application for synchrotron radiation X-ray diffraction. Rev Sci Instrum 81:053903

    Article  Google Scholar 

  • Fan DW, Wei SY, Liu J, Li YC, Xie HS (2011) High pressure X-ray diffraction study of a grossular–andradite solid solution and the bulk modulus variation along this solid solution. Chin Phys Lett 28:076101

    Article  Google Scholar 

  • Fan DW, Ma MN, Wei SY, Chen ZQ, Xie HS (2013) High pressure elastic behavior of synthetic Mg3Y2(SiO4)3 garnet up to 9 GPa. Adv Mater Sci Eng 2013:502702

    Article  Google Scholar 

  • Fan DW, Xu JG, Ma MN, Wei SY, Liu J, Xie HS (2015a) PVT equation of state of spessartine-almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction. Phys Chem Miner 42:63–72

    Article  Google Scholar 

  • Fan DW, Xu JG, Ma MN, Wei SY, Zhang B, Liu J, Xie HS (2015b) PVT equation of state of Ca3Cr2Si3O12 uvarovite garnet by using a diamond-anvil cell and in situ synchrotron X-ray diffraction. Am Miner 100:588–597

    Article  Google Scholar 

  • Fei YW, Ricolleau A, Frank M, Mibe K, Shen GY, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186

    Article  Google Scholar 

  • Gréaux S, Kono Y, Nishiyama N, Kunimoto T, Wada K, Irifune T (2011) PVT equation of state of Ca3Al2Si3O12 grossular garnet. Phys Chem Miner 38:85–94

    Article  Google Scholar 

  • Guyot F, Wang Y, Gillet P, Ricard Y (1996) Quasiharmonic computations of thermodynamic parameters of olivines at high pressure and high temperature: a comparison with experiment data. Phys Earth Plant Int 98:17–29

    Article  Google Scholar 

  • Gwanmesia GD, Liu J, Chen G, Kesson S, Rigden SM, Liebermann RC (2000) Elasticity of the pyrope (Mg3Al2Si3O12)–majorite (MgSiO3) garnets solid solution. Phys Chem Miner 27:445–452

    Article  Google Scholar 

  • Gwanmesia GD, Wang L, Triplett R, Liebermann RC (2009) Pressure and temperature dependence of the elasticity of pyrope-majorite [Py60Mj40 and Py50Mj50] garnet solid solution measured by ultrasonic interferometry technique. Phys Earth Plant Inter 174:105–112

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press Res 14:235–248

    Article  Google Scholar 

  • Hawthorne FC (2002) The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals. Can Miner 40:699–710

    Article  Google Scholar 

  • Huang S, Chen JH (2014) Equation of state of pyrope–almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction. Phys Earth Planet Inter 228:88–91

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1987) Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet Sci Lett 86:365–376

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1993) Phase transformation in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett 117:101–110

    Article  Google Scholar 

  • Isaak DG, Anderson OL, Oda H (1992) High-temperature thermal expansion and elasticity of calcium-rich garnets. Phys Chem Miner 19:106–120

    Article  Google Scholar 

  • Ita J, Stixrude L (1992) Petrology, elasticity, and composition of the mantle transition zone. J Geophys Res 97:6849–6866

    Article  Google Scholar 

  • Jackson I, Rigden SM (1996) Analysis of PVT data: constraints on the thermoelastic properties of high-pressure minerals. Phys Earth Planet Inter 96:85–112

    Article  Google Scholar 

  • Kantor I, Prakapenka V, Kantor A, Dera P, Kurnosov A, Sinogeikin S, Dubrovinskaia N, Dubrovinsky L (2012) BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev Sci Instrum 83:125102

    Article  Google Scholar 

  • Karato S, Wang Z, Liu B, Fujino K (1995) Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone. Earth Planet Sci Lett 130:13–30

    Article  Google Scholar 

  • Kono Y, Gréaux S, Higo Y, Ohfuji H, Irifune T (2010) Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1 650 K. J Earth Sci 21:782–791

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) GSAS general structure analysis system operation manual. Los Alamos Nat Lab LAUR 86–748:1–179

    Google Scholar 

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  • Lee KKM, O’Neill B, Panero WR, Shim SH, Benedetti LR, Jeanloz R (2004) Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle. Earth Planet Sci Lett 223:381–393

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Miner 93:1581–1584

    Article  Google Scholar 

  • Nishihara Y, Takahashi E, Matsukage KN, Kikegawa T (2003) Thermal equation of state of omphacite. Am Miner 88:80–86

    Article  Google Scholar 

  • Nishihara Y, Takahashi E, Matsukage KN, Iguchi T, Nakayama K, Funakoshi K (2004) Thermal equation of state (Mg0.91Fe0.09)2SiO4 ringwoodite. Phys Earth Planet Inter 143–144:33–46

    Article  Google Scholar 

  • Nishihara Y, Aoki I, Takahashi E, Matsukage KN, Funakoshi KI (2005) Thermal equation of state of majorite with MORB composition. Phys Earth Planet Inter 148:73–84

    Article  Google Scholar 

  • Pavese A, Diella V, Pischedda V, Merli M, Bocchio R, Mezouar M (2001) Pressure–volume–temperature equation of state of andradite and grossular, by high-pressure and -temperature powder diffraction. Phys Chem Miner 28:242–248

    Article  Google Scholar 

  • Pavese A, Levy D, Curetti N, Diella V, Fumagalli P, Sani A (2003) Equation of state and compressibility of phlogopite by in situ high-pressure X-ray powder diffraction. Eur J Miner 15:455–463

    Article  Google Scholar 

  • Rice JM (1983) Metamorphism of rodingites: part I. Phase relations in a portion of the system CaO–MgO–Al2O3–SiO2–CO2–H2O. Am J Sci 283:121–150

    Google Scholar 

  • Ringwood AE (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55:2083–2110

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  • Skinner BJ (1956) Physical properties of end-members of the garnet group. Am Miner 41:428–436

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Contrib Miner Petrol 135:164–178

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Velbel MA (1999) Bond strength and the relative weathering rates of simple orthosilicates. Am J Sci 299:679–696

    Article  Google Scholar 

  • Vinet P, Ferrante J, Rose JH, Smith JR (1987) Compressibility of solids. J Geophys Res 92:9319–9325

    Article  Google Scholar 

  • Wang Y, Weinder DJ, Guyot F (1996) Thermal equation of state of CaSiO3 perovskite. J Geophys Res 101:661–672

    Article  Google Scholar 

  • Wang Y, Weidner DJ, Zhang J, Gwanmesia GD, Liebermann RC (1998) Thermal equation of state of garnets along the pyrope-majorite join. Phys Earth Planet Inter 105:59–71

    Article  Google Scholar 

  • Wang LP, Essene EJ, Zhang YX (2000) Direct observation of immiscibility in pyrope-grossular garnet. Am Miner 85:41–46

    Article  Google Scholar 

  • Wang SC, Liu X, Fei YW, He Q, Wang HJ (2012) In situ high-temperature powder X-ray diffraction study on the spinel solid solutions (Mg1−x Mn x )Cr2O4. Phys Chem Miner 39:189–198

    Article  Google Scholar 

  • Weaver JS, Takahashi T, Bass J (1976) Isothermal compression of grossular garnets to 250 kbar and the effect of calcium on the bulk modulus. J Geophys Res 81:2475–2482

    Article  Google Scholar 

  • Weidner DJ, Wang Y (2000) Phase transformations: implications for mantle structure. Geophys Monogr Ser 117:215–235

    Google Scholar 

  • Xie HS, Zhang Y, Xu HG, Hou W, Guo J, Zhao H (1993) A new method of measurement for elastic wave velocities in minerals and rocks at high temperature and high pressure and its significance. Sci China Chem 36:1276–1280

    Google Scholar 

  • Xie HS, Zhou WG, Liu YG, Guo J, Hou W, Zhao ZD (2002) Comparative experimental study on several methods for measuring elastic wave velocities in rocks at high pressure. Sci China Earth Sci 45:990–998

    Article  Google Scholar 

  • Zhang L, Ahsbahs H, Kutoglu A, Geiger CA (1999) Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressure. Phys Chem Miner 27:52–58

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18010401), the Joint Research Fund in Huge Scientific Equipment (U1632112) under cooperative agreement between the National Natural Science Foundation of China (NSFC), and Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Grant No. 41374107). The high-pressure X-ray diffraction experiments were performed at the High-Pressure Experiment Station (4W2), Beijing Synchrotron Radiation Facility (BSRF). Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS through NSF grant EAR-1128799 and DOE grant DE-FG02-94ER14466. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, D., Kuang, Y., Xu, J. et al. Thermoelastic properties of grossular–andradite solid solution at high pressures and temperatures. Phys Chem Minerals 44, 137–147 (2017). https://doi.org/10.1007/s00269-016-0843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0843-4

Keywords

Navigation