Advertisement

Physics and Chemistry of Minerals

, Volume 44, Issue 2, pp 125–135 | Cite as

Thermal behavior of polyhalite: a high-temperature synchrotron XRD study

  • Hongwu XuEmail author
  • Xiaofeng Guo
  • Jianming Bai
Original Paper

Abstract

As an accessory mineral in marine evaporites, polyhalite, K2MgCa2(SO4)4·2H2O, coexists with halite (NaCl) in salt formations, which have been considered as potential repositories for permanent storage of high-level nuclear wastes. However, because of the heat generated by radioactive decays in the wastes, polyhalite may dehydrate, and the released water will dissolve its neighboring salt, potentially affecting the repository integrity. Thus, studying the thermal behavior of polyhalite is important. In this work, a polyhalite sample containing a small amount of halite was collected from the Salado formation at the WIPP site in Carlsbad, New Mexico. To determine its thermal behavior, in situ high-temperature synchrotron X-ray diffraction was conducted from room temperature to 1066 K with the sample powders sealed in a silica-glass capillary. At about 506 K, polyhalite started to decompose into water vapor, anhydrite (CaSO4) and two langbeinite-type phases, K2Ca x Mg2-x (SO4)3, with different Ca/Mg ratios. XRD peaks of the minor halite disappeared, presumably due to its dissolution by water vapor. With further increasing temperature, the two langbeinite solid solution phases displayed complex variations in crystallinity, composition and their molar ratio and then were combined into the single-phase triple salt, K2CaMg(SO4)3, at ~919 K. Rietveld analyses of the XRD data allowed determination of structural parameters of polyhalite and its decomposed anhydrite and langbeinite phases as a function of temperature. From the results, the thermal expansion coefficients of these phases have been derived, and the structural mechanisms of their thermal behavior been discussed.

Keywords

Polyhalite Thermal decomposition Anhydrite Langbeinite Crystal structure Thermal expansion Synchrotron X-ray diffraction Salt repository 

Notes

Acknowledgments

This work was supported by the University of California Lab Fees Research Program (Grant #237546). Use of the National Synchrotron Light Source at Brookhaven National Laboratory was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. Los Alamos National Laboratory is operated by Los Alamos National Security LLC, under DOE Contract DE-AC52-06NA25396. We thank the two anonymous reviewers for their helpful comments.

References

  1. Ballirano P, Melis E (2007) Thermal behaviour of β-anhydrite CaSO4 to 1263 K. Phys Chem Miner 34:699–704CrossRefGoogle Scholar
  2. Barbarick KA (1991) Polyhalite application to sorghum-sudangrass and leaching in soil columns. Soil Sci 151:159–166CrossRefGoogle Scholar
  3. Bindi L (2005) Reinvestigation of polyhalite, K2Ca2Mg(SO4)4·2H2O. Acta Cryst E61:i135–i136Google Scholar
  4. Boerio-Goates J, Artman JI, Woodfield BF (1990) Heat capacity studies of phase transitions in langbeinites II. K2Mg2(SO4)3. Phys Chem Miner 17:173–178CrossRefGoogle Scholar
  5. Chung KS, Bai J, Sparks CJ, Ice GE (2000) Increased performance with 12-mrad sagittal-focusing monochromator. AIP Conf Proc 521: 234–237CrossRefGoogle Scholar
  6. Evans HT Jr (1979) The thermal expansion of anhydrite to 1000 °C. Phys Chem Miner 4:77–82CrossRefGoogle Scholar
  7. Finger LW, Cox DE, Jephcoat AP (1994) A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Crystallogr 27:892–900CrossRefGoogle Scholar
  8. Fischer S, Voigt W, Köhnke K (1996) Thermal decomposition of polyhalite K2SO4·MgSO4·2CaSO4·2H2O. Cryst Res Technol 31:87–92CrossRefGoogle Scholar
  9. Hansen FD, Leigh CD (2011) Salt disposal of heat-generating nuclear waste. In: Sandia Report SAND2011-0161. Sandia National Laboratories, USAGoogle Scholar
  10. Hawthorne FC, Ferguson RB (1975) Anhydrous sulphates. II. Refinement of the crystal structure of anhydrite. Can Mineral 13:289–292Google Scholar
  11. Jentzsch PV, Bolanz RM, Ciobotă V, Kampe B, Rosch P, Majzlan J, Popp J (2012) Raman spectroscopic study of calcium mixed salts of atmospheric importance. Vib Spectrosc 61:206–213CrossRefGoogle Scholar
  12. Kropp E, Holldorf H (1988) Entwurf einer polytherme für das hexäre system Na+, K+, Mg2+, Ca2+/Cl, SO4 2−//H2O im temperaturbereich zwischen 35 und 110 °C und bei sättigung an NaCl, KCl(KCl·MgCl2·6H2O) und einem Ca-haltigen bodenkörper. Freib Forschh A764:67–82Google Scholar
  13. Kropp E, Beate R, Chr Grosch, Kramz M, Holldorf H (1988) Untersuchungen zu den isothermen des hexären systems Na+, K+, Mg2+, Ca2+/Cl, SO4 2−/H2O bei 35, 55, 75, 95 und 110 °C im bereich der sättigung von NaCl, KCl(KCl·MgCl2·6H2O) und einem Ca-haltigen bodenkörper. Freib Forschh A764:42–66Google Scholar
  14. Larson AC, Von Dreele RB (2000) GSAS—General Structure Analysis System. Los Alamos National Laboratory Report No. LAUR 86-748. Los Alamos National Laboratory, Los AlamosGoogle Scholar
  15. Lowenstein TK (1988) Origin of depositional cycles in the Permian “saline giant”: the Salado (McNutt zone) evaporites of New Mexico and Texas. Geol Soc Am Bull 100:592–608CrossRefGoogle Scholar
  16. Mereiter K (1979) Refinement of the crystal structure of langbeinite K2Mg2(SO4)3. Neues Jahrbuch fuer Mineralogie Monatshefte 1979:182–188Google Scholar
  17. Morey GW, Rowe JJ, Fournier RO (1964) The system K2Mg2(SO4)3 (langbeinite)-K2Ca2(SO4)3 (calcium–langbeinite). J Inorg Nucl Chem 26:53–58CrossRefGoogle Scholar
  18. Morikawa H, Tomita T, Minato I, Iwai SI (1975) Anhydrite: a refinement. Acta Crystallogr B31:2164–2165CrossRefGoogle Scholar
  19. Nathans MW (1963) The dehydration of polyhalite. J Phys Chem 67:1248–1249CrossRefGoogle Scholar
  20. Pekov IV, Zelenski ME, Zubkova NV, Yapaskurt VO, Chukanov NV, Belakovskiy DI, Pushcharovsky DY (2012) Calciolangbeinite, K2Ca2(SO4)3, a new mineral from the Tolbachik volcano, Kamchatka, Russia. Mineral Mag 76:673–682CrossRefGoogle Scholar
  21. Putnis A (1992) An introduction to mineral sciences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Rowe JJ, Morey GW, Silber CC (1967) The ternary system K2SO4–MgSO4–CaSO4. J Inorg Nucl Chem 29:925–942CrossRefGoogle Scholar
  23. Schlatti M, Sahl K, Zemann A, Zemann J (1970) Die. Kristallstruktur des Polyhalits, K2Ca2Mg[SO4]·2H2O. Tschermaks Miner Petrogr Mitt 14:75–86CrossRefGoogle Scholar
  24. Speer D, Salje E (1986) Phase transitions in langbeinites I: crystal chemistry and structures of K-double sulfates of the langbeinite type M2 ++K2 (SO4)3, M2 ++ = Mg, Ni, Co, Zn, Ca. Phys Chem Miner 13:17–24CrossRefGoogle Scholar
  25. Stewart FH (1963) Marine evaporite. In: Fleischer M (eds) Data of geochemistry, 6th edn, chapter Y. US Geological Survey Professional Paper 440-Y, 52 ppGoogle Scholar
  26. Thompson P, Cox DE, Hastings J (1987) Rietveld refinements of Debye–Scherrer synchrotron X-ray data for Al2O3. J Appl Crystallogr 20:79–83CrossRefGoogle Scholar
  27. Weck PF, Kim E, Jové-Colón CF, Sassani DC (2014) First-principles study of anhydrite, polyhalite and carnallite. Chem Phys Lett 594:1–5CrossRefGoogle Scholar
  28. Wollmann G, Freyer D, Voigt W (2008) Polyhalite and its analogous triple salts. Monatsh Chem 139:739–745CrossRefGoogle Scholar
  29. Wollmann G, Seidel J, Voigt W (2009) Heat of solution of polyhalite and its analogues at T = 298.15 K. J Chem Thermodyn 41:484–488CrossRefGoogle Scholar
  30. Zemann A, Zemann J (1957) Die kristallstruktur von langbeinit, K2Mg2(SO4)3. Acta Crystallogr 10:409–413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.National Synchrotron Light Source IIBrookhaven National LaboratoryUptonUSA

Personalised recommendations