Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K

Abstract

Lingunite (hollandite with Na contents of 80–85 mol%) discovered in the shock veins of strongly shocked meteorites is an important signature of shock metamorphism. To seek the stability region of lingunite, phase relations in the system KAlSi3O8–NaAlSi3O8 have been investigated by multi-anvil experiments at pressures of 20–23 GPa and temperatures of 1873 and 2273 K. Phase assemblages of hollandite + jadeite + stishovite, hollandite + calcium ferrite-type NaAlSiO4 + stishovite and hollandite single phase have been recovered, depending on the pressure–temperature conditions and the compositions of starting materials. Both pressure and temperature have large effects on the solubility of Na in hollandite, and hollandite with 79 mol% Na, similar to the natural lingunite in terms of Na content, has been firstly synthesized at 22 GPa and 2273 K. The stability region of K0.2Na0.8AlSi3O8 hollandite is comparable to the typical pressure–temperature conditions of the shock veins of strongly shocked meteorites (20–25 GPa and 2273–2500 K).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agee CB, Li J, Shannon MC, Circone S (1995) Pressure-temperature phase diagram for the Allende meteorite. J Geophys Res 100:17725–17740. doi:10.1029/95JB00049

    Article  Google Scholar 

  2. Akaogi M, Ajiro H, Kojitani H (2005) High-pressure phase relations of hollandite in the system KAlSi3O8–NaAlSi3O8. In: 2005 Annual meeting of the mineralogical society of Japan, Session ID K1-03. doi:10.14824/kobutsu.2005.0.3.0

  3. Akaogi M, Haraguchi M, Nakanishi K, Ajiro H, Kojitani H (2010) High-pressure phase relations in the system CaAl4Si2O11–NaAl3Si3O11 with implication for Na-rich CAS phase in shocked Martian meteorites. Earth Planet Sci Lett 289:503–508. doi:10.1016/j.epsl.2009.11.043

    Article  Google Scholar 

  4. Boffa Ballaran T, Liu J, Dubrovinsky LS, Caracas R, Crichton W (2009) High-pressure ferroelastic phase transition in aluminosilicate hollandite. Phys Rev B 80:214104. doi:10.1103/PhysRevB.80.214104

    Article  Google Scholar 

  5. Caracas R, Boffa Ballaran T (2010) Elasticity of (K, Na)AlSi3O8 hollandite from lattice dynamics calculations. Phys Earth Planet Inter 181:21–26. doi:10.1016/j.pepi.2010.04.004

    Article  Google Scholar 

  6. Chen M, Sharp TG, El Goresy A, Wopenka B, Xie X (1996) The majorite-pyrope + magnesiowüstite assemblage: constraints on the history of shock veins in chondrites. Science 271:1570–1573. doi:10.1126/science.271.5255.1570

    Article  Google Scholar 

  7. Fei Y, Orman JV, Li J (2004) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res 109:B02305. doi:10.1029/2003JB002562

    Article  Google Scholar 

  8. Ferroir T, Onozawa T, Yagi T et al (2006) Equation of state and phase transition in KAlSi3O8 hollandite at high pressure. Am Mineral 91:327–332. doi:10.2138/am.2006.1879

    Article  Google Scholar 

  9. Gillet P, Chen M, Dubrovinsky L, El Goresy A (2000) Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite. Science 287:1633–1636. doi:10.1126/science.287.5458.1633

    Article  Google Scholar 

  10. Ishii T, Kojitani H, Akaogi M (2012) High-pressure phase transitions and subduction behavior of continental crust at pressure-temperature conditions up to the upper part of the lower mantle. Earth Planet Sci Lett 357–358:34–41. doi:10.1016/j.epsl.2012.09.019

    Google Scholar 

  11. Kawai K, Tsuchiya T (2013) First-principles study on the high-pressure phase transition and elasticity of KAlSi3O8 hollandite. Am Mineral 98:207–218. doi:10.2138/am.2013.4077

    Article  Google Scholar 

  12. Liu L (1978) High-pressure phase transformations of albite, jadeite and nepheline. Earth Planet Sci Lett 37:438–444. doi:10.1016/0012-821X(78)90059-6

    Article  Google Scholar 

  13. Liu X (2006) Phase relations in the system KAlSi3O8–NaAlSi3O8 at high pressure–high temperature conditions and their implication for the petrogenesis of lingunite. Earth Planet Sci Lett 246:317–325. doi:10.1016/j.epsl.2006.04.016

    Article  Google Scholar 

  14. Liu L, El Goresy A (2007) High-pressure phase transitions of the feldspars, and further characterization of lingunite. Int Geol Rev 49:854–860. doi:10.2747/0020-6814.49.9.854

    Article  Google Scholar 

  15. Liu J, Boffa-Ballaran T, Dubrovinsky L, Frost D (2005) High pressure study of K–Na hollandite solid solution. In: American Geophysical Union, Fall Meeting 2005, Abstract No. MR31A-0125

  16. Ma C, Tschauner O, Beckett JR, Rossman GR (2015) Liebermannite: a new potassic hollandite (KAlSi3O8) from the Zagami basaltic shergottite. In: 46th Lunar and Planetary Science Conference, LPI Contribution No. 1832. p 1401

  17. Morishima H, Kato T, Suto M et al (1994) The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 26:1202–1203. doi:10.1126/science.265.5176.1202

    Article  Google Scholar 

  18. Nishiyama N, Rapp RP, Irifune T, Sanehira T, Yamazaki D, Funakoshi K (2005) Stability and P–V–T equation of state of KAlSi3O8-hollandite determined by in situ X-ray observations and implications for dynamics of subducted continental crust material. Phys Chem Miner 32:627–637. doi:10.1007/s00269-005-0037-y

    Article  Google Scholar 

  19. Ohfuji H, Yamamoto M (2015) EDS quantification of light elements using osmium surface coating. J Mineral Petrol Sci 110:189–195. doi:10.2465/jmps.141126

    Article  Google Scholar 

  20. Ohtani E, Kimura Y, Kimura M, Takata T, Kondo T, Kubo T (2004) Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size. Earth Planet Sci Lett 227:505–515. doi:10.1016/j.epsl.2004.08.018

    Article  Google Scholar 

  21. Ozawa S, Ohtani E, Miyahara M, Suzuki A, Kimura M, Ito Y (2009) Transformation textures, mechanisms of formation of high-pressure minerals in shock melt veins of L6 chondrites, and pressure-temperature conditions of the shock events. Meteorit Planet Sci 44:1771–1786. doi:10.1111/j.1945-5100.2009.tb01206.x

    Article  Google Scholar 

  22. Ringwood AE, Reid AF, Wadsley AD (1967) High-pressure KAlSi3O8, an aluminosilicate with sixfold coordination. Acta Crystallogr 23:1903–1905. doi:10.1107/S0365110X6700430X

    Article  Google Scholar 

  23. Stöffler D, Keil K, Edward S (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55:3845–3867. doi:10.1016/0016-7037(91)90078-J

    Article  Google Scholar 

  24. Sueda Y, Irifune T, Nishiyama N et al (2004) A new high-pressure form of KAlSi3O8 under lower mantle conditions. Geophys Res Lett 31:L23612. doi:10.1029/2004GL021156

    Article  Google Scholar 

  25. Suzuki A, Ohtani E, Morishima H et al (2000) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27:803–806. doi:10.1029/1999GL008425

    Article  Google Scholar 

  26. Tomioka N, Mori H, Fujino K (2000) Shock-induced transition of NaAlSi3O8 feldspar into a hollandite structure in a L6 chondrite. Geophys Res Lett 27:3997–4000. doi:10.1029/2000GL008513

    Article  Google Scholar 

  27. Tutti F (2007) Formation of end-member NaAlSi3O8 hollandite-type structure (lingunite) in diamond anvil cell. Phys Earth Planet Inter 161:143–149. doi:10.1016/j.pepi.2007.02.004

    Article  Google Scholar 

  28. Urakawa S, Kondo T, Igawa N, Shimomura O, Ohno H (1994) Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8. Phys Chem Miner 21:387–391. doi:10.1007/BF00203296

    Article  Google Scholar 

  29. Xie Z, Sharp TG, DeCarli PS (2006) High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: constraints on shock pressure and duration. Geochim Cosmochim Acta 70:504–515. doi:10.1016/j.gca.2005.09.003

    Article  Google Scholar 

  30. Yagi A, Suzuki T, Akaogi M (1994) High pressure transitions in the system KAlSi3O8–NaAlSi3O8. Phys Chem Miner 21:12–17. doi:10.1007/BF00205210

    Article  Google Scholar 

  31. Yamada H, Matsui Y, Ito E (1984) Crystal-chemical characterization of KAlSi3O8 with the hollandite structure. Mineral J 12:29–34. doi:10.2465/minerj.12.29

    Article  Google Scholar 

  32. Zhang J, Herzberg C (1994) Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J Geophys Res 99:17729–17742. doi:10.1029/94JB01406

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Kiyoshi Fujino, Dr. Toru Inoue, Dr. Yu Nishihara, Dr. Takeshi Sakai and Dr. Vincenzo Stagno for their discussion and comments. The authors are also grateful to the anonymous reviewers for their comments and advices.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Youmo Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Irifune, T., Ohfuji, H. et al. Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K. Phys Chem Minerals 44, 33–42 (2017). https://doi.org/10.1007/s00269-016-0834-5

Download citation

Keywords

  • Hollandite
  • Lingunite
  • Phase relation
  • High pressure and high temperature