Compressional behavior of omphacite to 47 GPa

Abstract

Omphacite is an important mineral component of eclogite. Single-crystal synchrotron X-ray diffraction data on natural (Ca, Na) (Mg, Fe, Al)Si2O6 omphacite have been collected at the Advanced Photon Source beamlines 13-BM-C and 13-ID-D up to 47 GPa at ambient temperature. Unit cell parameter and crystal structure refinements were carried out to constrain the isothermal equation of state and compression mechanism. The third-order Birch–Murnaghan equation of state (BM3) fit of all data gives V 0 = 423.9(3) Å3, K T0 = 116(2) GPa and K T0′ = 4.3(2). These elastic parameters are consistent with the general trend of the diopside–jadeite join. The eight-coordinated polyhedra (M2 and M21) are the most compressible and contribute to majority of the unit cell compression, while the SiO4 tetrahedra (Si1 and Si2) behave as rigid structural units and are the most incompressible. Axial compressibilities are determined by fitting linearized BM3 equation of state to pressure dependences of unit cell parameters. Throughout the investigated pressure range, the b-axis is more compressible than the c-axis. The axial compressibility of the a-axis is the largest among the three axes at 0 GPa, yet it quickly drops to the smallest at pressures above 5 GPa, which is explained by the rotation of the stiffest major compression axis toward the a-axis with the increase in pressure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agrusta R, van Hunen J, Goes S (2014) The effect of metastable pyroxene on the slab dynamics. Geophys Res Lett 41:8800–8808

    Article  Google Scholar 

  2. Anderson DL (2007) New theory of the earth. Cambridge University Press, New York

    Google Scholar 

  3. Angel RJ (2000) Equations of state. High-Temp High-Pressure Cryst Chem 41:35–59

    Google Scholar 

  4. Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419

    Google Scholar 

  5. Baur W (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr Sect B 30:1195–1215

    Article  Google Scholar 

  6. Bhagat SS, Bass JD, Smyth JR (1992) Single-crystal elastic properties of omphacite-C2/c by Brillouin spectroscopy. J Geophys Res-Solid Earth 97:6843–6848

    Article  Google Scholar 

  7. Dera P, Finkelstein GJ, Duffy TS, Downs RT, Meng Y, Prakapenka V, Tkachev S (2013a) Metastable high-pressure transformations of orthoferrosilite Fs(82). Phys Earth Planet In 221:15–21

    Article  Google Scholar 

  8. Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, Tschauner O, Clark SM, Downs RT (2013b) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 33:466–484

    Article  Google Scholar 

  9. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  Google Scholar 

  10. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854

    Article  Google Scholar 

  11. Finkelstein GJ, Dera PK, Duffy TS (2015) Phase transitions in orthopyroxene (En(90)) to 49 GPa from single-crystal X-ray diffraction. Phys Earth Planet In 244:78–86

    Article  Google Scholar 

  12. Fleet ME, Herzberg CT, Bancroft GM, Aldridge LP (1978) Omphacite studies; I, The P2/n– > C2/c transformation. Am Mineral 63:1100–1106

    Google Scholar 

  13. Fukao Y, Obayashi M, Nakakuki T, Grp DSP (2009) Stagnant slab: a review. Annu Rev Earth Pl Sci 37:19–46

    Article  Google Scholar 

  14. Gavrilenko P, Ballaran TB, Keppler H (2010) The effect of Al and water on the compressibility of diopside. Am Mineral 95:608–616

    Article  Google Scholar 

  15. Görbitz CH (1999) What is the best crystal size for collection of X-ray data? Refinement of the structure of glycyl-l-serine based on data from a very large crystal. Acta Crystallogr B 55:1090–1098

    Article  Google Scholar 

  16. Hirose K, Fei YW, Ma YZ, Mao HK (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397:53–56

    Article  Google Scholar 

  17. Hu Y, Dera P, Zhuravlev K (2015) Single-crystal diffraction and Raman spectroscopy of hedenbergite up to 33 GPa. Phys Chem Miner 42:595–608

    Article  Google Scholar 

  18. Kantor I, Prakapenka V, Kantor A, Dera P, Kurnosov A, Sinogeikin S, Dubrovinskaia N, Dubrovinsky L (2012) BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev Sci Instrum 83

  19. Kimura M, Sugiura N, Mikouchi T, Hirajima T, Hiyagon H, Takehana Y (2013) Eclogitic clasts with omphacite and pyrope-rich garnet in the NWA 801 CR2 chondrite. Am Mineral 98:387–393

    Article  Google Scholar 

  20. King SD, Frost DJ, Rubie DC (2015) Why cold slabs stagnate in the transition zone. Geology 43:231–234

    Article  Google Scholar 

  21. Knight KS (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Phys Chem Miner 37:529–533

    Article  Google Scholar 

  22. Koch-Muller M, Matsyuk SS, Wirth R (2004) Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform. Am Mineral 89:921–931

    Article  Google Scholar 

  23. Koch-Muller M, Abs-Wurmbach I, Rhede D, Kahlenberg V, Matsyuk S (2007) Dehydration experiments on natural omphacites: qualitative and quantitative characterization by various spectroscopic methods. Phys Chem Miner 34:663–678

    Article  Google Scholar 

  24. Liu LG, Mernagh TP, Jaques AL (1990) A Mineralogical Raman-spectroscopy study on eclogitic garnet inclusions in diamonds from argyle. Contrib Mineral Petr 105:156–161

    Article  Google Scholar 

  25. Mao HK, Xu J, Bell PM (1986) Calibration of the Ruby pressure gauge to 800-Kbar under quasi-hydrostatic conditions. J Geophys Res-Solid Earth 91:4673–4676

    Article  Google Scholar 

  26. Mccarthy AC, Downs RT, Thompson RM (2008) Compressibility trends of the clinopyroxenes, and in situ high-pressure single-crystal X-ray diffraction study of jadeite. Am Mineral 93:198–209

    Article  Google Scholar 

  27. McCormick TC, Hazen RM, Angel RJ (1989) Compressibility of omphacite to 60 kbar; role of vacancies. Am Mineral 74:1287–1292

    Google Scholar 

  28. McNamara DD (2012) Omphacite—a mineral under pressure! Geol Today 28:71–75

    Article  Google Scholar 

  29. Mitchell RS, Giardini AA (1977) Some mineral inclusions from African and Brazilian diamonds; their nature and significance. Am Mineral 62:756–762

    Google Scholar 

  30. Moghadam RH, Trepmann CA, Stockhert B, Renner J (2010) Rheology of synthetic omphacite aggregates at high pressure and high temperature. J Petrol 51:921–945

    Article  Google Scholar 

  31. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  Google Scholar 

  32. Mottana A, Rossi G, Kracher A, Kurat G (1979) Violan Revisited—Mn-bearing omphacite and diopside. Tscher Miner Petrog 26:187–201

    Article  Google Scholar 

  33. Nestola F, Ballaran TB, Liebske C, Bruno M, Tribaudino M (2006) High-pressure behaviour along the jadeite NaAlSi2O6-aegirine NaFeSi2O6 solid solution up to 10 GPa. Phys Chem Miner 33:417–425

    Article  Google Scholar 

  34. Nishi M, Kato T, Kubo T, Kikegawa T (2008) Survival of pyropic garnet in subducting plates. Phys Earth Planet In 170:274–280

    Article  Google Scholar 

  35. Nishihara Y, Takahashi E, Matsukage K, Kikegawa T (2003) Thermal equation of state of omphacite. Am Mineral 88:80–86

    Article  Google Scholar 

  36. Oberti R, Caporuscio FA (1991) Crystal-chemistry of clinopyroxenes from mantle eclogites—a study of the key role of the M2 site population by means of crystal-structure refinement. Am Mineral 76:1141–1152

    Google Scholar 

  37. Ohashi Y (1982) A program to calculate the strain tensor from two sets of unit-cell parameters (STRAIN). In: Hazen RM, Finger LW (eds) Comparative crystal chemistry. Wiley, New York, pp 92–102

    Google Scholar 

  38. Pandolfo F, Nestola F, Cámara F, Domeneghetti MC (2012) High-pressure behavior of space group P2/n omphacite. Am Mineral 97:407–414

    Article  Google Scholar 

  39. Pavese A, Diella V, Levy D, Hanfland M (2001) Synchrotron X-ray powder diffraction study of natural P2/n-omphacites at high-pressure conditions. Phys Chem Miner 28:9–16

    Article  Google Scholar 

  40. Promprated P, Taylor LA, Anand M, Floss C, Sobolev NV, Pokhilenko NP (2004) Multiple-mineral inclusions in diamonds from the Snap Lake/King Lake kimberlite dike, Slave craton, Canada: a trace-element perspective. Lithos 77:69–81

    Article  Google Scholar 

  41. Råheim A, Green D (1974) Experimental determination of the temperature and pressure dependence of the Fe–Mg partition coefficient for coexisting garnet and clinopyroxene. Contrib Mineral Petr 48:179–203

    Article  Google Scholar 

  42. Rivers M, Prakapenka VB, Kubo A, Pullins C, Holl CM, Jacobsen SD (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press Res 28:273–292

    Article  Google Scholar 

  43. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  44. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  45. Skelton R, Walker AM (2015) The effect of cation order on the elasticity of omphacite from atomistic calculations. Phys Chem Miner 42:677–691

    Article  Google Scholar 

  46. Smyth JR (1980) Cation vacancies and the crystal-chemistry of breakdown reactions in kimberlitic omphacites. Am Mineral 65:1185–1191

    Google Scholar 

  47. Sobolev VN, McCammon CA, Taylor LA, Snyder GA, Sobolev NV (1999) Precise Mossbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis. Am Mineral 84:78–85

    Article  Google Scholar 

  48. Sondergeld P, Li BS, Schreuer J, Carpenter MA (2006) Discontinuous evolution of single-crystal elastic constants as a function of pressure through the C2/c <–> P2(1)/c phase transition in spodumene (LiAlSi2O6). J Geophys Res-Solid Earth 111:B07202

    Article  Google Scholar 

  49. van der Hilst RD, Karason H (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: toward a hybrid convection model. Science 283:1885–1888

    Article  Google Scholar 

  50. van Mierlo WL, Langenhorst F, Frost DJ, Rubie DC (2013) Stagnation of subducting slabs in the transition zone due to slow diffusion in majoritic garnet. Nat Geosci 6:400–403

    Article  Google Scholar 

  51. Wang C, Yoneda A, Osako M, Ito E, Yoshino T, Jin ZM (2014) Measurement of thermal conductivity of omphacite, jadeite, and diopside up to 14 GPa and 1000 K: implication for the role of eclogite in subduction slab. J Geophys Res-Solid Earth 119:6277–6287

    Article  Google Scholar 

  52. Zhang YX (1998) Mechanical and phase equilibria in inclusion-host systems. Earth Planet Sci Lett 157:209–222

    Article  Google Scholar 

  53. Zhang L, Ahsbahs H, Hafner SS, Kutoglu A (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. Am Mineral 82:245–258

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Science Foundation Division of Earth Sciences Geophysics Grant No.1344942. Development of ATREX IDL software is supported under National Science Foundation Grant No. 1440005. This work was performed at GeoSoilEnviroCARS (Sector 13), Partnership for Extreme Crystallography program (PX^2), Advanced Photon Source (APS) and Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR-1128799) and Department of Energy—Geosciences (DE-FG02-94ER14466). PX^2 program is supported by COMPRES under NSF Cooperative Agreement EAR 11-57758. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-C02-6CH11357. Use of the COMPRES-GSECARS gas-loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS through NSF grant EAR-1128799 and DOE grant DE-FG02-94ER14466. We would like to thank Prof. R. T. Downs at the University of Arizona for kindly providing the samples from RRUFF collections, Dr. R. J. Angel at the University of Padova for the helpful discussions during the 49th International School of Crystallography, the two anonymous reviewers for the very positive, thorough, and constructive comments and Dr. Milan Rieder for handling the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dongzhou Zhang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Hu, Y. & Dera, P.K. Compressional behavior of omphacite to 47 GPa. Phys Chem Minerals 43, 707–715 (2016). https://doi.org/10.1007/s00269-016-0827-4

Download citation

Keywords

  • Pyroxene
  • High pressure
  • Single-crystal diffraction
  • Synchrotron
  • Mantle
  • Subduction