Advertisement

Physics and Chemistry of Minerals

, Volume 43, Issue 10, pp 707–715 | Cite as

Compressional behavior of omphacite to 47 GPa

  • Dongzhou Zhang
  • Yi Hu
  • Przemyslaw K. Dera
Original Paper

Abstract

Omphacite is an important mineral component of eclogite. Single-crystal synchrotron X-ray diffraction data on natural (Ca, Na) (Mg, Fe, Al)Si2O6 omphacite have been collected at the Advanced Photon Source beamlines 13-BM-C and 13-ID-D up to 47 GPa at ambient temperature. Unit cell parameter and crystal structure refinements were carried out to constrain the isothermal equation of state and compression mechanism. The third-order Birch–Murnaghan equation of state (BM3) fit of all data gives V 0 = 423.9(3) Å3, K T0 = 116(2) GPa and K T0′ = 4.3(2). These elastic parameters are consistent with the general trend of the diopside–jadeite join. The eight-coordinated polyhedra (M2 and M21) are the most compressible and contribute to majority of the unit cell compression, while the SiO4 tetrahedra (Si1 and Si2) behave as rigid structural units and are the most incompressible. Axial compressibilities are determined by fitting linearized BM3 equation of state to pressure dependences of unit cell parameters. Throughout the investigated pressure range, the b-axis is more compressible than the c-axis. The axial compressibility of the a-axis is the largest among the three axes at 0 GPa, yet it quickly drops to the smallest at pressures above 5 GPa, which is explained by the rotation of the stiffest major compression axis toward the a-axis with the increase in pressure.

Keywords

Pyroxene High pressure Single-crystal diffraction Synchrotron Mantle Subduction 

Notes

Acknowledgments

The project was supported by the National Science Foundation Division of Earth Sciences Geophysics Grant No.1344942. Development of ATREX IDL software is supported under National Science Foundation Grant No. 1440005. This work was performed at GeoSoilEnviroCARS (Sector 13), Partnership for Extreme Crystallography program (PX^2), Advanced Photon Source (APS) and Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR-1128799) and Department of Energy—Geosciences (DE-FG02-94ER14466). PX^2 program is supported by COMPRES under NSF Cooperative Agreement EAR 11-57758. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-C02-6CH11357. Use of the COMPRES-GSECARS gas-loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS through NSF grant EAR-1128799 and DOE grant DE-FG02-94ER14466. We would like to thank Prof. R. T. Downs at the University of Arizona for kindly providing the samples from RRUFF collections, Dr. R. J. Angel at the University of Padova for the helpful discussions during the 49th International School of Crystallography, the two anonymous reviewers for the very positive, thorough, and constructive comments and Dr. Milan Rieder for handling the manuscript.

Supplementary material

269_2016_827_MOESM1_ESM.cif (57 kb)
Supplementary material 1 (CIF 56 kb)
269_2016_827_MOESM2_ESM.cif (60 kb)
Supplementary material 2 (CIF 59 kb)
269_2016_827_MOESM3_ESM.cif (57 kb)
Supplementary material 3 (CIF 56 kb)
269_2016_827_MOESM4_ESM.cif (57 kb)
Supplementary material 4 (CIF 56 kb)
269_2016_827_MOESM5_ESM.cif (59 kb)
Supplementary material 5 (CIF 58 kb)
269_2016_827_MOESM6_ESM.cif (57 kb)
Supplementary material 6 (CIF 57 kb)
269_2016_827_MOESM7_ESM.cif (62 kb)
Supplementary material 7 (CIF 62 kb)
269_2016_827_MOESM8_ESM.cif (59 kb)
Supplementary material 8 (CIF 58 kb)
269_2016_827_MOESM9_ESM.cif (62 kb)
Supplementary material 9 (CIF 61 kb)
269_2016_827_MOESM10_ESM.cif (62 kb)
Supplementary material 10 (CIF 62 kb)
269_2016_827_MOESM11_ESM.cif (63 kb)
Supplementary material 11 (CIF 63 kb)
269_2016_827_MOESM12_ESM.cif (63 kb)
Supplementary material 12 (CIF 62 kb)
269_2016_827_MOESM13_ESM.cif (61 kb)
Supplementary material 13 (CIF 61 kb)
269_2016_827_MOESM14_ESM.cif (64 kb)
Supplementary material 14 (CIF 63 kb)
269_2016_827_MOESM15_ESM.xlsx (36 kb)
Supplementary material 15 (XLSX 35 kb)

References

  1. Agrusta R, van Hunen J, Goes S (2014) The effect of metastable pyroxene on the slab dynamics. Geophys Res Lett 41:8800–8808CrossRefGoogle Scholar
  2. Anderson DL (2007) New theory of the earth. Cambridge University Press, New YorkCrossRefGoogle Scholar
  3. Angel RJ (2000) Equations of state. High-Temp High-Pressure Cryst Chem 41:35–59Google Scholar
  4. Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419Google Scholar
  5. Baur W (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr Sect B 30:1195–1215CrossRefGoogle Scholar
  6. Bhagat SS, Bass JD, Smyth JR (1992) Single-crystal elastic properties of omphacite-C2/c by Brillouin spectroscopy. J Geophys Res-Solid Earth 97:6843–6848CrossRefGoogle Scholar
  7. Dera P, Finkelstein GJ, Duffy TS, Downs RT, Meng Y, Prakapenka V, Tkachev S (2013a) Metastable high-pressure transformations of orthoferrosilite Fs(82). Phys Earth Planet In 221:15–21CrossRefGoogle Scholar
  8. Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, Tschauner O, Clark SM, Downs RT (2013b) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 33:466–484CrossRefGoogle Scholar
  9. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341CrossRefGoogle Scholar
  10. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854CrossRefGoogle Scholar
  11. Finkelstein GJ, Dera PK, Duffy TS (2015) Phase transitions in orthopyroxene (En(90)) to 49 GPa from single-crystal X-ray diffraction. Phys Earth Planet In 244:78–86CrossRefGoogle Scholar
  12. Fleet ME, Herzberg CT, Bancroft GM, Aldridge LP (1978) Omphacite studies; I, The P2/n– > C2/c transformation. Am Mineral 63:1100–1106Google Scholar
  13. Fukao Y, Obayashi M, Nakakuki T, Grp DSP (2009) Stagnant slab: a review. Annu Rev Earth Pl Sci 37:19–46CrossRefGoogle Scholar
  14. Gavrilenko P, Ballaran TB, Keppler H (2010) The effect of Al and water on the compressibility of diopside. Am Mineral 95:608–616CrossRefGoogle Scholar
  15. Görbitz CH (1999) What is the best crystal size for collection of X-ray data? Refinement of the structure of glycyl-l-serine based on data from a very large crystal. Acta Crystallogr B 55:1090–1098CrossRefGoogle Scholar
  16. Hirose K, Fei YW, Ma YZ, Mao HK (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397:53–56CrossRefGoogle Scholar
  17. Hu Y, Dera P, Zhuravlev K (2015) Single-crystal diffraction and Raman spectroscopy of hedenbergite up to 33 GPa. Phys Chem Miner 42:595–608CrossRefGoogle Scholar
  18. Kantor I, Prakapenka V, Kantor A, Dera P, Kurnosov A, Sinogeikin S, Dubrovinskaia N, Dubrovinsky L (2012) BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev Sci Instrum 83Google Scholar
  19. Kimura M, Sugiura N, Mikouchi T, Hirajima T, Hiyagon H, Takehana Y (2013) Eclogitic clasts with omphacite and pyrope-rich garnet in the NWA 801 CR2 chondrite. Am Mineral 98:387–393CrossRefGoogle Scholar
  20. King SD, Frost DJ, Rubie DC (2015) Why cold slabs stagnate in the transition zone. Geology 43:231–234CrossRefGoogle Scholar
  21. Knight KS (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Phys Chem Miner 37:529–533CrossRefGoogle Scholar
  22. Koch-Muller M, Matsyuk SS, Wirth R (2004) Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform. Am Mineral 89:921–931CrossRefGoogle Scholar
  23. Koch-Muller M, Abs-Wurmbach I, Rhede D, Kahlenberg V, Matsyuk S (2007) Dehydration experiments on natural omphacites: qualitative and quantitative characterization by various spectroscopic methods. Phys Chem Miner 34:663–678CrossRefGoogle Scholar
  24. Liu LG, Mernagh TP, Jaques AL (1990) A Mineralogical Raman-spectroscopy study on eclogitic garnet inclusions in diamonds from argyle. Contrib Mineral Petr 105:156–161CrossRefGoogle Scholar
  25. Mao HK, Xu J, Bell PM (1986) Calibration of the Ruby pressure gauge to 800-Kbar under quasi-hydrostatic conditions. J Geophys Res-Solid Earth 91:4673–4676CrossRefGoogle Scholar
  26. Mccarthy AC, Downs RT, Thompson RM (2008) Compressibility trends of the clinopyroxenes, and in situ high-pressure single-crystal X-ray diffraction study of jadeite. Am Mineral 93:198–209CrossRefGoogle Scholar
  27. McCormick TC, Hazen RM, Angel RJ (1989) Compressibility of omphacite to 60 kbar; role of vacancies. Am Mineral 74:1287–1292Google Scholar
  28. McNamara DD (2012) Omphacite—a mineral under pressure! Geol Today 28:71–75CrossRefGoogle Scholar
  29. Mitchell RS, Giardini AA (1977) Some mineral inclusions from African and Brazilian diamonds; their nature and significance. Am Mineral 62:756–762Google Scholar
  30. Moghadam RH, Trepmann CA, Stockhert B, Renner J (2010) Rheology of synthetic omphacite aggregates at high pressure and high temperature. J Petrol 51:921–945CrossRefGoogle Scholar
  31. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658CrossRefGoogle Scholar
  32. Mottana A, Rossi G, Kracher A, Kurat G (1979) Violan Revisited—Mn-bearing omphacite and diopside. Tscher Miner Petrog 26:187–201CrossRefGoogle Scholar
  33. Nestola F, Ballaran TB, Liebske C, Bruno M, Tribaudino M (2006) High-pressure behaviour along the jadeite NaAlSi2O6-aegirine NaFeSi2O6 solid solution up to 10 GPa. Phys Chem Miner 33:417–425CrossRefGoogle Scholar
  34. Nishi M, Kato T, Kubo T, Kikegawa T (2008) Survival of pyropic garnet in subducting plates. Phys Earth Planet In 170:274–280CrossRefGoogle Scholar
  35. Nishihara Y, Takahashi E, Matsukage K, Kikegawa T (2003) Thermal equation of state of omphacite. Am Mineral 88:80–86CrossRefGoogle Scholar
  36. Oberti R, Caporuscio FA (1991) Crystal-chemistry of clinopyroxenes from mantle eclogites—a study of the key role of the M2 site population by means of crystal-structure refinement. Am Mineral 76:1141–1152Google Scholar
  37. Ohashi Y (1982) A program to calculate the strain tensor from two sets of unit-cell parameters (STRAIN). In: Hazen RM, Finger LW (eds) Comparative crystal chemistry. Wiley, New York, pp 92–102Google Scholar
  38. Pandolfo F, Nestola F, Cámara F, Domeneghetti MC (2012) High-pressure behavior of space group P2/n omphacite. Am Mineral 97:407–414CrossRefGoogle Scholar
  39. Pavese A, Diella V, Levy D, Hanfland M (2001) Synchrotron X-ray powder diffraction study of natural P2/n-omphacites at high-pressure conditions. Phys Chem Miner 28:9–16CrossRefGoogle Scholar
  40. Promprated P, Taylor LA, Anand M, Floss C, Sobolev NV, Pokhilenko NP (2004) Multiple-mineral inclusions in diamonds from the Snap Lake/King Lake kimberlite dike, Slave craton, Canada: a trace-element perspective. Lithos 77:69–81CrossRefGoogle Scholar
  41. Råheim A, Green D (1974) Experimental determination of the temperature and pressure dependence of the Fe–Mg partition coefficient for coexisting garnet and clinopyroxene. Contrib Mineral Petr 48:179–203CrossRefGoogle Scholar
  42. Rivers M, Prakapenka VB, Kubo A, Pullins C, Holl CM, Jacobsen SD (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press Res 28:273–292CrossRefGoogle Scholar
  43. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570CrossRefGoogle Scholar
  44. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  45. Skelton R, Walker AM (2015) The effect of cation order on the elasticity of omphacite from atomistic calculations. Phys Chem Miner 42:677–691CrossRefGoogle Scholar
  46. Smyth JR (1980) Cation vacancies and the crystal-chemistry of breakdown reactions in kimberlitic omphacites. Am Mineral 65:1185–1191Google Scholar
  47. Sobolev VN, McCammon CA, Taylor LA, Snyder GA, Sobolev NV (1999) Precise Mossbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis. Am Mineral 84:78–85CrossRefGoogle Scholar
  48. Sondergeld P, Li BS, Schreuer J, Carpenter MA (2006) Discontinuous evolution of single-crystal elastic constants as a function of pressure through the C2/c <–> P2(1)/c phase transition in spodumene (LiAlSi2O6). J Geophys Res-Solid Earth 111:B07202CrossRefGoogle Scholar
  49. van der Hilst RD, Karason H (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: toward a hybrid convection model. Science 283:1885–1888CrossRefGoogle Scholar
  50. van Mierlo WL, Langenhorst F, Frost DJ, Rubie DC (2013) Stagnation of subducting slabs in the transition zone due to slow diffusion in majoritic garnet. Nat Geosci 6:400–403CrossRefGoogle Scholar
  51. Wang C, Yoneda A, Osako M, Ito E, Yoshino T, Jin ZM (2014) Measurement of thermal conductivity of omphacite, jadeite, and diopside up to 14 GPa and 1000 K: implication for the role of eclogite in subduction slab. J Geophys Res-Solid Earth 119:6277–6287CrossRefGoogle Scholar
  52. Zhang YX (1998) Mechanical and phase equilibria in inclusion-host systems. Earth Planet Sci Lett 157:209–222CrossRefGoogle Scholar
  53. Zhang L, Ahsbahs H, Hafner SS, Kutoglu A (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. Am Mineral 82:245–258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Ocean and Earth Science and Technology, Hawai’i Institute of Geophysics and PlanetologyUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Department of Geology and Geophysics, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations