Advertisement

Physics and Chemistry of Minerals

, Volume 43, Issue 4, pp 301–306 | Cite as

Equation of state of synthetic qandilite Mg2TiO4 at ambient temperature

  • Mingda Lv
  • Xi Liu
  • Sean R. Shieh
  • Tianqi Xie
  • Fei Wang
  • Clemens Prescher
  • Vitali B. Prakapenka
Original Paper

Abstract

Using a diamond-anvil cell and synchrotron X-ray diffraction, the compressional behavior of a synthetic qandilite Mg2.00(1)Ti1.00(1)O4 has been investigated up to about 14.9 GPa at 300 K. The pressure–volume data fitted to the third-order Birch–Murnaghan equation of state yield an isothermal bulk modulus (K T0) of 175(5) GPa, with its first derivative \(K_{T0}^{{\prime }}\) attaining 3.5(7). If \(K_{T0}^{{\prime }}\) is fixed as 4, the K T0 value is 172(1) GPa. This value is substantially larger than the value of the adiabatic bulk modulus (K S0) previously determined by an ultrasonic pulse echo method (152(7) GPa; Liebermann et al. in Geophys J Int 50:553–586, 1977), but in general agreement with the K T0 empirically estimated on the basis of crystal chemical systematics (169 GPa; Hazen and Yang in Am Miner 84:1956–1960, 1999). Compared to the K T0 values of the ulvöspinel (Fe2TiO4; ~148(4) GPa with \(K_{T0}^{{\prime }} = 4\)) and the ringwoodite solid solutions along the Mg2SiO4–Fe2SiO4 join, our finding suggests that the substitution of Mg2+ for Fe2+ on the T sites of the 4–2 spinels can have more significant effect on the K T0 than that on the M sites.

Keywords

Compressibility Diamond-anvil cell Synchrotron X-ray diffraction Qandilite 

Notes

Acknowledgments

We thank Dr R. J. Angel for the discussions about the EoS fitting procedures, Dr F. Nestola and one anonymous reviewer for their constructive comments on our manuscript, and Dr T. Tsuchiya for processing our paper. The high-P work was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-GeoSciences (DE-FG02-94ER14466). Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS through NSF Grant EAR-1128799 and DOE Grant DE-FG02-94ER14466. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This work is financially supported by the Natural Science Foundation of China (Grant Nos. 41440015 and 41273072).

References

  1. Akimoto S, Syono Y (1967) High-pressure decomposition for some titanate spinels. J Chem Phys 47:1813–1817CrossRefGoogle Scholar
  2. Al-Hermezi HM (1985) Qandilite, a new spinel end-member, Mg2TiO4, from the Qala-Dizeh region, NE Iraq. Miner Mag 49:739–744CrossRefGoogle Scholar
  3. Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America, Chantilly, pp 35–60Google Scholar
  4. Bass JD, Liebermann RC, Weidner DJ, Finch SJ (1981) Elastic properties from acoustic and volume compression experiments. Phys Earth Planet Inter 25:140–158CrossRefGoogle Scholar
  5. Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–924CrossRefGoogle Scholar
  6. Birch F (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high-pressures and 300 K. J Geophys Res 83:1257–1268CrossRefGoogle Scholar
  7. Bosi F, Hålenius U, Skogby H (2014) Crystal chemistry of the ulvöspinel-qandilite series. Am Miner 99:847–851CrossRefGoogle Scholar
  8. Chang L, Chen Z, Liu X, Wang H (2013) Expansivity and compressibility of wadeite-type K2Si4O9 determined by in situ high T/P experiments, and their implication. Phys Chem Miner 40:29–40CrossRefGoogle Scholar
  9. Ferry JM (1996) Three novel isograds in metamorphosed siliceous dolomites from the Ballachulish aureole, Scotland. Am Miner 81:485–494CrossRefGoogle Scholar
  10. Fleet ME, Liu X, Shieh SR (2010) Structural change in lead fluorapatite at high pressure. Phys Chem Miner 37:1–9CrossRefGoogle Scholar
  11. Gittins J, Fawcett JJ, Rucklidge JC, Brooks CK (1982) An occurrence of the spinel end-member Mg2TiO4 and related spinel solid solutions. Miner Mag 45:135–137CrossRefGoogle Scholar
  12. Harrison RJ, Palin EJ, Perks N (2013) A computational model of cation ordering in the magnesioferrite–qandilite (MgFe2O4–Mg2TiO4) solid solution and its potential application to titanomagnetite (Fe3O4–Fe2TiO4). Am Miner 98:698–708CrossRefGoogle Scholar
  13. Hazen RM, Yang H (1999) Effects of cation substitution and order-disorder on PVT-equations of state of cubic spinels. Am Miner 84:1956–1960CrossRefGoogle Scholar
  14. Heinz DL, Jeanloz R (1984) The equation of state of the gold calibration standard. J Appl Phys 55:885–893CrossRefGoogle Scholar
  15. Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data; the use of regression diagnostics. Miner Mag 61:65–77CrossRefGoogle Scholar
  16. Hu X, Liu X, He Q, Wang H, Qin S, Ren L, Wu C, Chang L (2011) Thermal expansion of andalusite and sillimanite at ambient pressure: a powder X-ray diffraction study up to 1000 °C. Miner Mag 75:363–374CrossRefGoogle Scholar
  17. Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413CrossRefGoogle Scholar
  18. Liebermann RC, Jackson I, Ringwood AE (1977) Elasticity and phase equilibria of spinel disproportionation reactions. Geophys J Int 50:553–586CrossRefGoogle Scholar
  19. Liu X, Shieh SR, Fleet ME, Zhang L (2009) Compressibility of a natural kyanite to 17.5 GPa. Prog Nat Sci 19:1281–1286CrossRefGoogle Scholar
  20. Liu X, Shieh SR, Fleet ME, Zhang L, He Q (2011) Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: significance of carbonate. Am Miner 96:74–80CrossRefGoogle Scholar
  21. Liu X, Xiong Z, Chang L, He Q, Wang F, Shieh SR, Wu C, Li B, Zhang L (2015) Anhydrous ringwoodites in the mantle transition zone: their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature. Solid Earth Sci. doi: 10.1016/j.sesci.2015.09.001 Google Scholar
  22. Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pt, and Au and calibration of ruby R1 fluorescence pressure gauge for 0.006 to 1 Mbar. J Appl Phys 49:3276–3283CrossRefGoogle Scholar
  23. Millard RL, Peterson RC, Hunter BK (1995) Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data. Am Miner 80:885–896CrossRefGoogle Scholar
  24. O’Neill HStC, Scott DR (2005) The free energy of formation of Mg2TiO4 (synthetic qandilite), an inverse spinel with configurational entropy. Eur J Miner 17:315–323CrossRefGoogle Scholar
  25. O’Neill HStC, Redfern SA, Kesson S, Short S (2003) An in situ neutron diffraction study of cation disordering in synthetic qandilite Mg2TiO4 at high temperatures. Am Miner 88:860–865CrossRefGoogle Scholar
  26. Oktyabrsky RA, Shcheka SA, Lennikov M, Afanasyeva TB (1992) The first occurrence of qandilite in Russia. Miner Mag 56:385–389CrossRefGoogle Scholar
  27. Palin EJ, Walker AM, Harrison RJ (2008) A computational study of order–disorder phenomena in Mg2TiO4 spinel (qandilite). Am Miner 93:1363–1372CrossRefGoogle Scholar
  28. Pascal ML, Fonteilles M, Boudouma O, Principe C (2011) Qandilite from vesuvius skarn ejecta: conditions of formation and miscibility gap in the ternary spinel-qandilite–magnesioferrite. Can Miner 49:459–485CrossRefGoogle Scholar
  29. Prescher C, Prakapenka VB (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res 35:223–230CrossRefGoogle Scholar
  30. Rigden SM, Jackson I (1991) Elasticity of germanate and silicate spinels at high pressure. J Geophys Res 96:9999–10006CrossRefGoogle Scholar
  31. Rigden SM, Jackson I, Niesler H, Ringwood AE, Liebermann RC (1988) Pressure dependence of the elastic wave velocities from Mg2GeO4 spinel to 3 GPa. Geophys Res Lett 15:605–608CrossRefGoogle Scholar
  32. Sawada H (1996) Electron density study of spinels: magnesium titanium oxide (Mg2TiO4). Mater Res Bull 31:355–360CrossRefGoogle Scholar
  33. Syono Y, Fukai Y, Ishikawa Y (1971) Anomalous elastic properties of Fe2TiO4. J Phys Soc Jpn 31:471–476CrossRefGoogle Scholar
  34. Wechsler BA, Navrotsky A (1984) Thermodynamics and structural chemistry of compounds in the system MgO–TiO2. J Solid State Chem 55:165–180CrossRefGoogle Scholar
  35. Wechsler BA, Von Dreele RB (1989) Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction. Acta Crystallogr B 45:542–549CrossRefGoogle Scholar
  36. Xiong Z, Liu X, Shieh SR, Wang F, Wu X, Hong X, Shi Y (2015) Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03) Ti1.00O4.00, at ambient temperature. Phys Chem Miner 42:171–177CrossRefGoogle Scholar
  37. Yamanaka T, Mine T, Asogawa S, Nakamoto Y (2009) Jahn-Teller transition of Fe2TiO4 observed by maximum entropy method at high pressure and low temperature. Phys Rev B 80:134120CrossRefGoogle Scholar
  38. Yamanaka T, Kyono A, Nakamoto Y, Meng Y, Kharlamova S, Struzhkin VV, Mao HK (2013) High-pressure phase transitions of Fe3−xTixO4 solid solution up to 60 GPa correlated with electronic spin transition. Am Miner 98:736–744CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mingda Lv
    • 1
    • 2
  • Xi Liu
    • 1
    • 2
  • Sean R. Shieh
    • 3
  • Tianqi Xie
    • 3
  • Fei Wang
    • 1
    • 2
  • Clemens Prescher
    • 4
  • Vitali B. Prakapenka
    • 4
  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, MOEPeking UniversityBeijingPeople’s Republic of China
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingPeople’s Republic of China
  3. 3.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  4. 4.Center for Advanced Radiation SourcesUniversity of ChicagoChicagoUSA

Personalised recommendations