Physics and Chemistry of Minerals

, Volume 43, Issue 3, pp 229–236 | Cite as

Sound velocity and elastic properties of Fe–Ni and Fe–Ni–C liquids at high pressure

  • Soma Kuwabara
  • Hidenori Terasaki
  • Keisuke Nishida
  • Yuta Shimoyama
  • Yusaku Takubo
  • Yuji Higo
  • Yuki Shibazaki
  • Satoru Urakawa
  • Kentaro Uesugi
  • Akihisa Takeuchi
  • Tadashi Kondo
Original Paper

Abstract

The sound velocity (VP) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained VP of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The VP values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the VP of liquid Fe, whereas alloying with C is likely to increase the VP. However, a difference in VP between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured VP data with the Murnaghan equation of state, the adiabatic bulk modulus (KS0) and its pressure derivative (KS) were obtained to be KS0 = 103 GPa and KS = 5.7 for liquid Fe–Ni and KS0 = 110 GPa and KS = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (VP) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and VP decreased, whereas the effect of C dissolution was to decrease ρ but increase VP. In contrast, alloying with S significantly reduces both ρ and VP. Therefore, the effects of light elements (C and S) and Ni on the ρ and VP of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.

Keywords

Sound velocity Density Fe-alloy Liquid High pressure 

References

  1. Anderson DL (1972) Internal constitution of Mars. J Geophys Res 77:789–795CrossRefGoogle Scholar
  2. Anderson WW, Ahrens TJ (1994) An equation of state for liquid iron and implications for the Earth’s core. J Geophys Res 99:4273–4284CrossRefGoogle Scholar
  3. Balog PS, Secco RA, Rubie DC, Frost DJ (2003) Equation of state of liquid Fe–10 wt% S: implications for the metallic cores of planetary bodies. J Geophys Res. doi:10.1029/2001JB001646 Google Scholar
  4. Belashchenko DK, Mirzoev A, Ostrovski O (2011) Molecular dynamics modelling of liquid Fe–C alloys. High Temp Mater Process 30:297–303CrossRefGoogle Scholar
  5. Chen B, Li Z, Zhang D, Liu J, Hu MY, Zhao J, Bi W, Alp EE, Xiao Y, Chow P, Li J (2014a) Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3. Proc Natl Acad Sci 111:17755–17758CrossRefGoogle Scholar
  6. Chen J, Yu T, Huang S, Girard J, Liu X (2014b) Compressibility of liquid FeS measured using X-ray radiograph imaging. Phys Earth Planet Inter 228:294–299CrossRefGoogle Scholar
  7. Fiquet G, Badro J, Gregoryanz E, Fei Y, Occelli F (2009) Sound velocity in iron carbide (Fe3C) at high pressure: implications for the carbon content of the Earth’s inner core. Phys Earth Planet Inter 172:125–129CrossRefGoogle Scholar
  8. Garcia RF, Gagnepain-Beyneix J, Chevrot S, Lognonné P (2012) Erratum to “Very Preliminary Reference Moon Model”, by R.F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné [Phys. Earth Planet. Inter. 188 (2011) 96–113]. Phys Earth Planet Inter 202–203:89–91CrossRefGoogle Scholar
  9. Goto S, Takeshita K, Suzuki Y, Ohashi H, Asano Y, Kimura H, Matsushita T, Yagi N, Isshiki M, Yamazaki H, Yoneda Y, Umetani K, Ishikawa T (2001) Construction and commissioning of a 215-m-long beamline at SPring-8. Nucl Instrum Methods Phys Res Sec A 467–468:682–685CrossRefGoogle Scholar
  10. Higo Y, Kono Y, Inoue T, Irifune T, Funakoshi K (2009) A system for measuring elastic wave velocity under high pressure and high temperature using a combination of ultrasonic measurement and the multi-anvil apparatus at SPring-8. J Synchrotron Radiat 16:762–768CrossRefGoogle Scholar
  11. Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C (2010) The chemical composition of the Earth: enstatite chondrite models. Earth Planet Sci Lett 3–4:259–268CrossRefGoogle Scholar
  12. Jimbo I, Cramb AW (1993) The density of liquid iron-carbon alloys. Metall Trans B 24B:5–10CrossRefGoogle Scholar
  13. Jing Z, Wang Y, Kono Y, Yu T, Sakamaki T, Park C, Rivers ML, Sutton SR, Shen G (2014) Sound velocity of Fe–S liquids at high pressure: implications for the Moon’s molten outer core. Earth Planet Sci Lett 396:78–87CrossRefGoogle Scholar
  14. Kahn A, Mosegaard K, Williams JG, Lognonné P (2004) Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector. J Geophys Res 109:E09007. doi:10.1029/2004JE002294 Google Scholar
  15. Kantor AP, Kantor IY, Kurnosov AV, Kuznetsov AY, Dubrovinskaia NA, Krisch M, Bossak AA, Dmitriev VP, Urusov VS, Dubrovinsky LS (2007) Sound wave velocities of fcc Fe–Ni alloy at high pressure and temperature by mean of inelastic X-ray scattering. Phys Earth Planet Inter 164:83–89CrossRefGoogle Scholar
  16. Li J, Fei Y (2014) Experimental constraints on core composition. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, 2nd edn, 3 (the mantle and core). Elsevier Ltd, Amsterdam, pp 527–557CrossRefGoogle Scholar
  17. Lin J-F, Struzhkin VV, Sturhahn W, Huang E, Zhao J, Hu MY, Alp EE, H-k Mao, Boctor N, Hemley RJ (2003) Sound velocities of iron-nickel and iron-silicon alloys at high pressures. Geophys Res Lett. doi:10.1029/2003GL018405 Google Scholar
  18. Lognonné P, Gagnepain-Beyneix J, Chenet H (2003) A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth Planet Sci Lett 211:27–44CrossRefGoogle Scholar
  19. Martorell B, Brodholt J, Wood IG, Vocˇadlo L (2013) The effect of nickel on the properties of iron at the conditions of Earth’s inner core: Ab initio calculations of seismic wave velocities of Fe–Ni alloys. Earth Planet Sci Lett 365:143–151CrossRefGoogle Scholar
  20. Matsumoto K, Yamada R, Kikuchi F, Kamata S, Ishihara Y, Iwata T, Hanada H, Sasaki S (2015) Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys Res Lett 42:7351–7358. doi:10.1002/2015GL065335 CrossRefGoogle Scholar
  21. McDonough WF (2005) Compositional model for the Earth’s core. In: Carlson RW (ed) Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 547–568Google Scholar
  22. McSween HY Jr (2005) Mars. In: Davis AM (ed) Treatise on geochemistry, vol 1. Elsevier, Amsterdam, pp 601–621Google Scholar
  23. Nasch PM, Manghnani MH (1998) Molar volume, thermal expansion, and bulk modulus in liquid Fe–Ni alloys at 1 bar: evidence for magnetic anomalies? In: Manghnani MH, Yagi T (eds) Properties of Earth and planetary materials at high pressure and temperature. American Geophysical Union, Washington DC, pp 307–317CrossRefGoogle Scholar
  24. Nishida K, Ohtani E, Urakawa S, Suzuki A, Sakamaki T, Terasaki H, Katayama Y (2011) Density measurement of liquid FeS at high pressures using synchrotron X-ray absorption. Am Miner 96:864–868CrossRefGoogle Scholar
  25. Nishida K, Kono Y, Terasaki H, Takahashi S, Ishii M, Shimoyama Y, Higo Y, Funakoshi K, Irifune T, Ohtani E (2013) Sound velocity measurements in liquid Fe–S at high pressure: implications for Earth’s and lunar cores. Earth Planet Sci Lett 362:182–186CrossRefGoogle Scholar
  26. Pronin LA, Kazakov NB, Filippov SI (1964) Ultrasonic measurement of molten iron. Ferr Metall (in Russian) 669:12–16Google Scholar
  27. Sanloup C, Jambon A, Gillet P (1999) A simple chondritic model of Mars. Phys Earth Planet Inter 112:43–54CrossRefGoogle Scholar
  28. Sanloup C, Guyot F, Gillet P, Fiquet G, Mezouar M, Martinez I (2000) Density measurements of liquid Fe–S at high-pressure. Geophys Res Lett 27:811–814CrossRefGoogle Scholar
  29. Sanloup C, Fiquet G, Gregoryanz E, Morard G, Mezouar M (2004) Effect of Si on liquid Fe compressibility: implications for sound velocity in core materials. Geophys Res Lett. doi:10.1029/2004GL019526 Google Scholar
  30. Sanloup C, van Westrenen W, Dasgupta R, Maynard-Casely H, Perrillat J-P (2011) Compressibility change in iron-rich melt and implications for core formation models. Earth Planet Sci Lett 306:118–122CrossRefGoogle Scholar
  31. Shimoyama Y, Terasaki H, Ohtani E, Urakawa S, Takubo Y, Nishida K, Suzuki A, Katayama Y (2013) Density of Fe–3.5 wt% C liquid at high pressure and temperature and the effect of carbon on the density of the molten iron. Phys Earth Planet Inter 224:77–82CrossRefGoogle Scholar
  32. Suzuki Y, Uesugi K, Takimoto N, Fukui T, Aoyama K, Takeuchi A, Takano H, Yagi N, Mochizuki T, Goto S, Takeshita K, Takahashi S, Ohashi H, Furukawa Y, Ohata T, Matsushita T, Ishizawa Y, Yamazaki H, Yabashi M, Tanaka T, Kitamura H, Ishikawa T (2004) Construction and commissioning of A 248 m-log beamline with X-ray undulator light source. In: Warwick T et al (eds) Synchro Rad Instrum, American Institute of Physics Conference Proceeding, 705, pp 344–347Google Scholar
  33. Tange Y, Nishihara Y, Tsuchiya T (2009) Unified analyses for P–V–T equation of state of MgO: a solution for pressure-scale problems in high P–T experiments. J Geophys Res 114:B03208. doi:10.1029/2008JB005813 Google Scholar
  34. Terasaki H (2016) Physical properties of the outer core. In: Terasaki H, Fischer RA (eds) Deep earth: physics and chemistry of the lower mantle and core. Geophysical monograph series 217, AGU/Wiley (in press)Google Scholar
  35. Terasaki H, Nishida K, Shibazaki Y, Sakamaki T, Suzuki A, Ohtani E, Kikegawa T (2010) Density measurement of Fe3C liquid using X-ray absorption image up to 10 GPa and effect of light elements on compressibility of liquid iron. J Geophys Res. doi:10.1029/2009JB006905 Google Scholar
  36. Terasaki H, Nishida K, Urakawa S, Uesugi K, Kuwabara S, Takuno Y, Shimoyama Y, Takeuchi A, Suzuki Y, Kono Y, Higo Y, Kondo T (2013) The effect of pressure and temperature on sound velocity and density of Ni-S liquid, 2013 AGU Fall meeting abstract, MR21A-2327Google Scholar
  37. Uesugi K, Hoshino M, Takeuchi A, Suzuki Y, Yagi N (2012) Development of fast and high throughput tomography using CMOS image detector at SPring-8. Proc Soc Photo Opt Instrum Eng 8506:85060I. doi:10.1117/12.929575 Google Scholar
  38. Umemoto K, Hirose K, Imada S, Nakajima Y, Komabayashi T, Tsutsui S, Baron AQR (2014) Liquid iron-sulfur alloys at outer core conditions by first-principles calculations. Geophys Res Lett 41:6712–6717. doi:10.1002/2014GL061233 CrossRefGoogle Scholar
  39. Urakawa S, Terasaki H, Funakoshi K, Uesugi K, Yamamoto S (2010) Development of high pressure apparatus for X-ray microtomography at SPring-8. J Phys: Conf Ser 215:012026Google Scholar
  40. Wakabayashi D, Funamori N (2015) Solving the problem of inconsistency in the reported equations of state for h-BN. High Press Res 35:123–129CrossRefGoogle Scholar
  41. Weber RC, Lin P-Y, Garnero EJ, Williams Q, Lognonné P (2011) Seismic detection of the lunar core. Science 331:309–331CrossRefGoogle Scholar
  42. Williams JG, Konopliv AS, Boggs DH, Park RS, Yuan D-N, Lemoine FG, Goossens S, Mazarico E, Nimmo F, Weber RC, Asmar SW, Melosh HJ, Neumann GA, Phillips RJ, Smith DE, Solomon SC, Watkins MM, Wieczorek MA, Andrews-Hanna JC, Head JW, Kiefer WS, Matsuyama I, McGovern PJ, Taylor GJ, Zuber MT (2014) Lunar interior properties from the GRAIL mission. J Geophys Res Planets 119:1546–1578. doi:10.1002/2013JE004559 CrossRefGoogle Scholar
  43. Zhang Y, Yin Q-Z (2012) Carbon and other light element contents in the Earth’s core based on first-principles molecular dynamics. Proc Natl Acad Sci 109:19579–19583CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Soma Kuwabara
    • 1
  • Hidenori Terasaki
    • 1
  • Keisuke Nishida
    • 2
  • Yuta Shimoyama
    • 1
  • Yusaku Takubo
    • 1
  • Yuji Higo
    • 3
  • Yuki Shibazaki
    • 4
  • Satoru Urakawa
    • 5
  • Kentaro Uesugi
    • 3
  • Akihisa Takeuchi
    • 3
  • Tadashi Kondo
    • 1
  1. 1.Department of Earth and Space ScienceOsaka UniversityToyonakaJapan
  2. 2.Department of Earth and Planetary ScienceThe University of TokyoTokyoJapan
  3. 3.Japan Synchrotron Radiation Research InstituteSayoJapan
  4. 4.Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
  5. 5.Department of Earth ScienceOkayama UniversityOkayamaJapan

Personalised recommendations