Physics and Chemistry of Minerals

, Volume 43, Issue 2, pp 119–126 | Cite as

Si and O self-diffusion in hydrous forsterite and iron-bearing olivine from the perspective of defect chemistry

  • Hongzhan Fei
  • Tomoo Katsura
Original Paper


We discuss the experimental results of silicon and oxygen self-diffusion coefficients in forsterite and iron-bearing olivine from the perspective of defect chemistry. Silicon diffusion is dominated by VO ··-associated VSi″″, whereas oxygen diffusion is dominated by hopping of VO ·· under anhydrous conditions, and by (OH)O · under hydrous conditions. By considering the charge neutrality condition of [(OH)O ·] = 2[VMe″] in hydrous forsterite and iron-bearing olivine, we get D Si ∝ (\(C_{{{\text{H}}_{2} {\text{O}}}}\))1/3 and D O ∝ (\(C_{{{\text{H}}_{2} {\text{O}}}}\))0, which explains the experimental results of water effects on oxygen and silicon self-diffusion rates (Fei et al. in Nature 498:213–215, 2013; J Geophys Res 119:7598–7606, 2014). The \(C_{{{\text{H}}_{2} {\text{O}}}}\) dependence of creep rate in the Earth’s mantle should be close to that given by Si and O self-diffusion coefficients obtained under water unsaturated conditions.


Defect chemistry Water content Silicon Oxygen Self-diffusion coefficient Forsterite 



This work is supported by the Research Grant by the German Research Foundation (DFG) to T. Katsura (KA 3434/3-1) and by the postdoctoral fellowship for oversea researchers from Japan Society for the Promotion of Science (JSPS) to H. Fei (25003327).


  1. Bai Q, Kohlstedt DL (1992) Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature 357:672–674CrossRefGoogle Scholar
  2. Bai Q, Kohlstedt DL (1993) Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys Chem Mineral 19:460–471CrossRefGoogle Scholar
  3. Balan E, Blanchard M, Lazzeri M, Ingrin J (2014) Contribution of interstitial OH groups to the incorporation of water in forsterite. Phys Chem Mineral 41:105–114CrossRefGoogle Scholar
  4. Bali E, Bolfan-Casanova N, Koga KT (2008) Pressure and temperature dependence of H solubility in forsterite: an implication to water activity in the Earth interior. Earth Planet Sci Lett 268:354–363CrossRefGoogle Scholar
  5. Bercovici D, Karato SI (2003) Whole-mantle convection and the transition-zone water filter. Nature 425:39–44CrossRefGoogle Scholar
  6. Brodholt JP, Refson K (2000) An ab initio study of hydrogen in forsterite and a possible mechanism for hydrolytic weakening. J Geophys Res 105:18977–18982CrossRefGoogle Scholar
  7. Costa F, Chakraborty S (2008) The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Phys Earth Planet Int 166:11–29CrossRefGoogle Scholar
  8. Demouchy S, Mackwell S (2003) Water diffusion in synthetic iron-free forsterite. Phys Chem Mineral 30:486–494CrossRefGoogle Scholar
  9. Dixon JE, Leist L, Langmuir C, Schilling J (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420:385–389CrossRefGoogle Scholar
  10. Dohmen R, Chakraborty S, Becker HW (2002) Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys Res Lett 29. doi: 10.1029/2002GL015480 Google Scholar
  11. Dyar MD, McGuire AV, Ziegler RD (1989) Redox equilibria and crystal chemistry of coexisting minerals from spinel lherzolite mantle xenoliths. Am Mineral 74:969–980Google Scholar
  12. Fei H (2013) Silicon and oxygen self-diffusion in forsterite and implications to upper-mantle rheology. PhD dissertation. University of Bayreuth, Germany, pp 186–189Google Scholar
  13. Fei H, Wiedenbeck M, Yamazaki D, Katsura T (2013) Small effect of water on the upper mantle rheology based on Si self-diffusion coefficient. Nature 498:213–215CrossRefGoogle Scholar
  14. Fei H, Wiedenbeck M, Yamazaki D, Katsura T (2014) No effect of water on oxygen self-diffusion rate in forsterite. J Geophys Res 119:7598–7606CrossRefGoogle Scholar
  15. Férot A, Bolfan-Casanova N (2012) Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet Sci Lett 349:218–230CrossRefGoogle Scholar
  16. Gaetani GA, O’Leary JA, Koga KT, Hauri EH, Rose-Koga EF, Monteleone BD (2014) Hydration of mantle olivine under variable water and oxygen fugacity conditions. Contrib Mineral Petrol 167:1–14CrossRefGoogle Scholar
  17. Gérard O, Jaoul O (1989) Oxygen diffusion in San Carlos olivine. J Geophys Res 94:4119–4128CrossRefGoogle Scholar
  18. Grant KJ, Kohn SC, Brooker RA (2006) Solubility and partitioning of water in synthetic forsterite and enstatite in the system MgO–SiO2–H2O ± Al2O3. Contrib Mineral Petrol 151:651–664CrossRefGoogle Scholar
  19. Hirschmann MM (2006) Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653CrossRefGoogle Scholar
  20. Hirth G, Kohlstedt D (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys Monogr 138:83–106Google Scholar
  21. Houlier B, Cheraghmakani M, Jaoul O (1990) Silicon diffusion in San-Carlos olivine. Phys Earth Planet Int 62:329–340CrossRefGoogle Scholar
  22. Iwamori H, Nakakuki T (2013) Fluid processes in subduction zones and water transport to the deep mantle. In: Karato SI (ed) Physics and chemistry of the deep earth. Wiley, Hoboken, pp 372–391CrossRefGoogle Scholar
  23. Karato SI (2008) Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press, Cambridge, pp 34–47, 168–198Google Scholar
  24. Karato SI, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83:401–414CrossRefGoogle Scholar
  25. Karato SI, Paterson MS, Fitzgerald JD (1986) Rheology of synthetic olivine aggregates: influence of grain size and water. J Geophys Res 91:8151–8176CrossRefGoogle Scholar
  26. Kohlstedt DL (2006) The role of water in high-temperature rock deformation. Rev Mineral Geochem 62:377–396CrossRefGoogle Scholar
  27. Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem 207:147–162CrossRefGoogle Scholar
  28. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the alpha, beta and gamma phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol 123:345–357CrossRefGoogle Scholar
  29. Kröger FA, Vink HJ (1956) Relations between the concentrations of imperfections in crystalline solids. Solid State Phys 3:307–435Google Scholar
  30. Lemaire C, Kohn SC, Brooker RA (2004) The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: a polarised infrared spectroscopic study. Contrib Mineral Petrol 147:48–57CrossRefGoogle Scholar
  31. Mei S, Kohlstedt DL (2000a) Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. J Geophys Res 105:21457–21469CrossRefGoogle Scholar
  32. Mei S, Kohlstedt DL (2000b) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res 105:21471–21481CrossRefGoogle Scholar
  33. Mosenfelder JL, Deligne NI, Asimow PD, Rossman GR (2006) Hydrogen incorporation in olivine from 2–12 GPa. Am Mineral 91:285–294CrossRefGoogle Scholar
  34. Nakamura H, Iwamori H (2009) Contribution of slab-fluid in arc magmas beneath the Japan arcs. Gondwana Res 16:431–445CrossRefGoogle Scholar
  35. Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Mineral 10:27–37CrossRefGoogle Scholar
  36. Nakamura A, Schmalzried H (1984) On the Fe2+–Mg2+-interdiffusion in olivine (II). Ber Bunsenges Phys Chem 88:140–145CrossRefGoogle Scholar
  37. O’Neill HSC, Rubie DC, Canil D, Geiger CA, Ross CR II, Seifert F, Woodland AB (1993) Ferric iron in the upper mantle and in transition zone assemblages: implications for relative oxygen fugacities in the mantle. Geophys Monogr 74:73–88Google Scholar
  38. Otsuka K, Karato SI (2011) Control of the water fugacity at high pressures and temperatures: applications to the incorporation mechanisms of water in olivine. Phys Earth Planet Int 189:27–33CrossRefGoogle Scholar
  39. Ringwood AE (1991) Phase-transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55:2083–2110CrossRefGoogle Scholar
  40. Ryerson FJ, Durham WB, Cherniak DJ, Lanford WA (1989) Oxygen diffusion in olivine: effect of oxygen fugacity and implications for creep. J Geophys Res 94:4105–4118CrossRefGoogle Scholar
  41. Smyth DM, Stocker RL (1975) Point defects and non-stoichiometry in forsterite. Phys Earth Planet Int 10:183–192CrossRefGoogle Scholar
  42. Smyth JR, Frost DJ, Nestola F, Holl CM, Bromiley G (2006) Olivine hydration in the deep upper mantle: effects of temperature and silica activity. Geophys Res Lett 33:L15301(1–5)Google Scholar
  43. Stocker RL, Smyth DM (1978) Effect of enstatite activity and oxygen partial pressure on the point-defect chemistry of olivine. Phys Earth Planet Int 16:145–156CrossRefGoogle Scholar
  44. Walker AM, Wright K, Slater B (2003) A computational study of oxygen diffusion in olivine. Phys Chem Mineral 30:536–545CrossRefGoogle Scholar
  45. Wang ZY, Hiraga T, Kohlstedt DL (2004) Effect of H+ on Fe–Mg interdiffusion in olivine, (Fe, Mg)2SiO4. Appl Phys Lett 85:209–211CrossRefGoogle Scholar
  46. Wang DJ, Mookherjee M, Xu YS, Karato SI (2006) The effect of water on the electrical conductivity of olivine. Nature 443:977–980CrossRefGoogle Scholar
  47. Wang DJ, Li HP, Yi L, Shi BP (2008) The electrical conductivity of upper-mantle rocks: water content in the upper mantle. Phys Chem Mineral 35:157–162CrossRefGoogle Scholar
  48. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar
  49. Zhang Y (2010) Diffusion in minerals and melts: theoretical background. Rev Mineral Geochem 72:5–59CrossRefGoogle Scholar
  50. Zhao Y, Ginsberg SB, Kohlstedt DL (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib Mineral Petrol 147:155–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute for Study of the Earth’s InteriorOkayama UniversityMisasaJapan
  2. 2.Bayerisches GeoinstitutUniversity of BayreuthBayreuthGermany

Personalised recommendations