Physics and Chemistry of Minerals

, Volume 43, Issue 2, pp 119–126 | Cite as

Si and O self-diffusion in hydrous forsterite and iron-bearing olivine from the perspective of defect chemistry

Original Paper

Abstract

We discuss the experimental results of silicon and oxygen self-diffusion coefficients in forsterite and iron-bearing olivine from the perspective of defect chemistry. Silicon diffusion is dominated by VO··-associated VSi″″, whereas oxygen diffusion is dominated by hopping of VO·· under anhydrous conditions, and by (OH)O· under hydrous conditions. By considering the charge neutrality condition of [(OH)O·] = 2[VMe″] in hydrous forsterite and iron-bearing olivine, we get DSi ∝ (\(C_{{{\text{H}}_{2} {\text{O}}}}\))1/3 and DO ∝ (\(C_{{{\text{H}}_{2} {\text{O}}}}\))0, which explains the experimental results of water effects on oxygen and silicon self-diffusion rates (Fei et al. in Nature 498:213–215, 2013; J Geophys Res 119:7598–7606, 2014). The \(C_{{{\text{H}}_{2} {\text{O}}}}\) dependence of creep rate in the Earth’s mantle should be close to that given by Si and O self-diffusion coefficients obtained under water unsaturated conditions.

Keywords

Defect chemistry Water content Silicon Oxygen Self-diffusion coefficient Forsterite 

References

  1. Bai Q, Kohlstedt DL (1992) Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature 357:672–674CrossRefGoogle Scholar
  2. Bai Q, Kohlstedt DL (1993) Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys Chem Mineral 19:460–471CrossRefGoogle Scholar
  3. Balan E, Blanchard M, Lazzeri M, Ingrin J (2014) Contribution of interstitial OH groups to the incorporation of water in forsterite. Phys Chem Mineral 41:105–114CrossRefGoogle Scholar
  4. Bali E, Bolfan-Casanova N, Koga KT (2008) Pressure and temperature dependence of H solubility in forsterite: an implication to water activity in the Earth interior. Earth Planet Sci Lett 268:354–363CrossRefGoogle Scholar
  5. Bercovici D, Karato SI (2003) Whole-mantle convection and the transition-zone water filter. Nature 425:39–44CrossRefGoogle Scholar
  6. Brodholt JP, Refson K (2000) An ab initio study of hydrogen in forsterite and a possible mechanism for hydrolytic weakening. J Geophys Res 105:18977–18982CrossRefGoogle Scholar
  7. Costa F, Chakraborty S (2008) The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Phys Earth Planet Int 166:11–29CrossRefGoogle Scholar
  8. Demouchy S, Mackwell S (2003) Water diffusion in synthetic iron-free forsterite. Phys Chem Mineral 30:486–494CrossRefGoogle Scholar
  9. Dixon JE, Leist L, Langmuir C, Schilling J (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420:385–389CrossRefGoogle Scholar
  10. Dohmen R, Chakraborty S, Becker HW (2002) Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys Res Lett 29. doi:10.1029/2002GL015480 Google Scholar
  11. Dyar MD, McGuire AV, Ziegler RD (1989) Redox equilibria and crystal chemistry of coexisting minerals from spinel lherzolite mantle xenoliths. Am Mineral 74:969–980Google Scholar
  12. Fei H (2013) Silicon and oxygen self-diffusion in forsterite and implications to upper-mantle rheology. PhD dissertation. University of Bayreuth, Germany, pp 186–189Google Scholar
  13. Fei H, Wiedenbeck M, Yamazaki D, Katsura T (2013) Small effect of water on the upper mantle rheology based on Si self-diffusion coefficient. Nature 498:213–215CrossRefGoogle Scholar
  14. Fei H, Wiedenbeck M, Yamazaki D, Katsura T (2014) No effect of water on oxygen self-diffusion rate in forsterite. J Geophys Res 119:7598–7606CrossRefGoogle Scholar
  15. Férot A, Bolfan-Casanova N (2012) Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet Sci Lett 349:218–230CrossRefGoogle Scholar
  16. Gaetani GA, O’Leary JA, Koga KT, Hauri EH, Rose-Koga EF, Monteleone BD (2014) Hydration of mantle olivine under variable water and oxygen fugacity conditions. Contrib Mineral Petrol 167:1–14CrossRefGoogle Scholar
  17. Gérard O, Jaoul O (1989) Oxygen diffusion in San Carlos olivine. J Geophys Res 94:4119–4128CrossRefGoogle Scholar
  18. Grant KJ, Kohn SC, Brooker RA (2006) Solubility and partitioning of water in synthetic forsterite and enstatite in the system MgO–SiO2–H2O ± Al2O3. Contrib Mineral Petrol 151:651–664CrossRefGoogle Scholar
  19. Hirschmann MM (2006) Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653CrossRefGoogle Scholar
  20. Hirth G, Kohlstedt D (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys Monogr 138:83–106Google Scholar
  21. Houlier B, Cheraghmakani M, Jaoul O (1990) Silicon diffusion in San-Carlos olivine. Phys Earth Planet Int 62:329–340CrossRefGoogle Scholar
  22. Iwamori H, Nakakuki T (2013) Fluid processes in subduction zones and water transport to the deep mantle. In: Karato SI (ed) Physics and chemistry of the deep earth. Wiley, Hoboken, pp 372–391CrossRefGoogle Scholar
  23. Karato SI (2008) Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press, Cambridge, pp 34–47, 168–198Google Scholar
  24. Karato SI, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83:401–414CrossRefGoogle Scholar
  25. Karato SI, Paterson MS, Fitzgerald JD (1986) Rheology of synthetic olivine aggregates: influence of grain size and water. J Geophys Res 91:8151–8176CrossRefGoogle Scholar
  26. Kohlstedt DL (2006) The role of water in high-temperature rock deformation. Rev Mineral Geochem 62:377–396CrossRefGoogle Scholar
  27. Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem 207:147–162CrossRefGoogle Scholar
  28. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the alpha, beta and gamma phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol 123:345–357CrossRefGoogle Scholar
  29. Kröger FA, Vink HJ (1956) Relations between the concentrations of imperfections in crystalline solids. Solid State Phys 3:307–435Google Scholar
  30. Lemaire C, Kohn SC, Brooker RA (2004) The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: a polarised infrared spectroscopic study. Contrib Mineral Petrol 147:48–57CrossRefGoogle Scholar
  31. Mei S, Kohlstedt DL (2000a) Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. J Geophys Res 105:21457–21469CrossRefGoogle Scholar
  32. Mei S, Kohlstedt DL (2000b) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res 105:21471–21481CrossRefGoogle Scholar
  33. Mosenfelder JL, Deligne NI, Asimow PD, Rossman GR (2006) Hydrogen incorporation in olivine from 2–12 GPa. Am Mineral 91:285–294CrossRefGoogle Scholar
  34. Nakamura H, Iwamori H (2009) Contribution of slab-fluid in arc magmas beneath the Japan arcs. Gondwana Res 16:431–445CrossRefGoogle Scholar
  35. Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Mineral 10:27–37CrossRefGoogle Scholar
  36. Nakamura A, Schmalzried H (1984) On the Fe2+–Mg2+-interdiffusion in olivine (II). Ber Bunsenges Phys Chem 88:140–145CrossRefGoogle Scholar
  37. O’Neill HSC, Rubie DC, Canil D, Geiger CA, Ross CR II, Seifert F, Woodland AB (1993) Ferric iron in the upper mantle and in transition zone assemblages: implications for relative oxygen fugacities in the mantle. Geophys Monogr 74:73–88Google Scholar
  38. Otsuka K, Karato SI (2011) Control of the water fugacity at high pressures and temperatures: applications to the incorporation mechanisms of water in olivine. Phys Earth Planet Int 189:27–33CrossRefGoogle Scholar
  39. Ringwood AE (1991) Phase-transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55:2083–2110CrossRefGoogle Scholar
  40. Ryerson FJ, Durham WB, Cherniak DJ, Lanford WA (1989) Oxygen diffusion in olivine: effect of oxygen fugacity and implications for creep. J Geophys Res 94:4105–4118CrossRefGoogle Scholar
  41. Smyth DM, Stocker RL (1975) Point defects and non-stoichiometry in forsterite. Phys Earth Planet Int 10:183–192CrossRefGoogle Scholar
  42. Smyth JR, Frost DJ, Nestola F, Holl CM, Bromiley G (2006) Olivine hydration in the deep upper mantle: effects of temperature and silica activity. Geophys Res Lett 33:L15301(1–5)Google Scholar
  43. Stocker RL, Smyth DM (1978) Effect of enstatite activity and oxygen partial pressure on the point-defect chemistry of olivine. Phys Earth Planet Int 16:145–156CrossRefGoogle Scholar
  44. Walker AM, Wright K, Slater B (2003) A computational study of oxygen diffusion in olivine. Phys Chem Mineral 30:536–545CrossRefGoogle Scholar
  45. Wang ZY, Hiraga T, Kohlstedt DL (2004) Effect of H+ on Fe–Mg interdiffusion in olivine, (Fe, Mg)2SiO4. Appl Phys Lett 85:209–211CrossRefGoogle Scholar
  46. Wang DJ, Mookherjee M, Xu YS, Karato SI (2006) The effect of water on the electrical conductivity of olivine. Nature 443:977–980CrossRefGoogle Scholar
  47. Wang DJ, Li HP, Yi L, Shi BP (2008) The electrical conductivity of upper-mantle rocks: water content in the upper mantle. Phys Chem Mineral 35:157–162CrossRefGoogle Scholar
  48. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar
  49. Zhang Y (2010) Diffusion in minerals and melts: theoretical background. Rev Mineral Geochem 72:5–59CrossRefGoogle Scholar
  50. Zhao Y, Ginsberg SB, Kohlstedt DL (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib Mineral Petrol 147:155–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute for Study of the Earth’s InteriorOkayama UniversityMisasaJapan
  2. 2.Bayerisches GeoinstitutUniversity of BayreuthBayreuthGermany

Personalised recommendations