Physics and Chemistry of Minerals

, Volume 42, Issue 9, pp 707–722 | Cite as

The characteristic photoluminescence and EPR features of superdeep diamonds (São-Luis, Brazil)

  • Olga P. YuryevaEmail author
  • Mariana I. Rakhmanova
  • Vladimir A. Nadolinny
  • Dmitry A. Zedgenizov
  • Vladislav S. Shatsky
  • Hiroyuki Kagi
  • Andrey Yu. Komarovskikh
Original Paper


Photoluminescence (PL) spectroscopy and electron paramagnetic resonance (EPR) were used for the first time to characterize properties of superdeep diamonds from the São-Luis alluvial deposits (Brazil). The infrared measurements showed the low nitrogen content (>50 of 87 diamonds from this locality were nitrogen free and belonged to type IIa) and simultaneously the extremely high level of nitrogen aggregation (pure type IaB being predominant), which indicates that diamonds under study might have formed under high pressure and temperature conditions. In most cases, PL features excited at various wavelengths (313, 473, and 532 nm) were indicative of different growth and post-growth processes during which PL centers could be formed via interaction between vacancies and nitrogen atoms. The overall presence of the 490.7 nm, H3, and H4 centers in the luminescence spectra attests to strong plastic deformations in these diamonds. The neutral vacancy known as the GR1 center has probably occurred in a number of crystals due to radiation damage in the post-growth period. The 558.5 nm PL center is found to be one of the most common defects in type IIa samples which is accompanied by the EPR center with g-factor of 2.00285. The 536 and 576 nm vibronic systems totally dominated the PL spectra of superdeep diamonds, while none of “normal” diamonds from the Mir pipe (Yakutia) with similar nitrogen characteristics showed the latter three PL centers.


Superdeep diamond Photoluminescence (PL) spectroscopy EPR Electron irradiation Annealing 



The study was supported in part by the Siberian Branch of the Russian Academy of Sciences (Integration Project No. 16), the Ministry of Education and Science of the Russian Federation (Project No. 14.B25.31.0032), and the Russian Foundation for Basic Research (Grants No. 15-55-50033, 14-05-92107). The authors would like to thank the two anonymous reviewers for the constructive comments to make the publication  of this paper possible.


  1. Araujo DP, Gaspar JC, Bulanova GP, Smith CB, Kohn SC, Walter MJ, Hauri EH (2013) Juina diamonds from kimberlites and alluvials: a comparison of morphology, spectral characteristics and carbon isotope composition. In: Proceedings of 10th international kimberlite conference, Bangalore, India, pp 255–269Google Scholar
  2. Aström M, Scarani A, Torelli M (2013) Detecting HPHT treatment of natural type IIa colorless diamonds. M&A Gemological Instruments Sep 13Google Scholar
  3. Brookes EJ, Collins AT, Woods GS (1993) Cathodoluminescence at indentations in diamonds. J Hard Mater 4:98–105Google Scholar
  4. Bruce LF, Kopylova MG, Longo M, Ryder J, Dobrzhinetskaya LF (2011) Luminescence of diamond from metamorphic rocks. Am Mineral 96:14–22. doi: 10.2138/am.2011.3467 CrossRefGoogle Scholar
  5. Collins AT (2000) Spectroscopy of defects and transition metals in diamond. Diam Relat Matter 9:417–423. doi: 10.1016/S0925-9635(99)00314-3 CrossRefGoogle Scholar
  6. Collins AT, Ly CH (2002) Misidentification of nitrogen-vacancy absorption in diamond. J Phys Condens Matter 14(25):467–471. doi: 10.1088/0953-8984/14/25/105 CrossRefGoogle Scholar
  7. Collins AT, Woods GS (1982) Cathodoluminescence from ‘giant’ platelets, and of the 2·526 eV vibronic system, in type Ia diamonds. Philos Mag B 45(4):385–397. doi: 10.1080/01418638208227446 CrossRefGoogle Scholar
  8. Collins AT, Connor A, Ly CH, Shareef A, Spear PM (2005) High-temperature annealing of optical centers in type-I diamond. J Appl Phys 97:083517. doi: 10.1063/1.1866501 CrossRefGoogle Scholar
  9. Davies G (1972) The effect of nitrogen impurity on the annealing of radiation damage in diamond. J Phys C Solid State Phys 5:2534–2542. doi: 10.1088/0022-3719/5/17/027 CrossRefGoogle Scholar
  10. De Weerdt F, Collins AT (2007) Broad-band luminescence in natural brown type Ia diamonds. Diam Relat Mater 16:512–516. doi: 10.1016/j.diamond.2006.10.003 CrossRefGoogle Scholar
  11. Deljanin B, Simic D, Zaitsev A, Chapman J, Dobrinets I, Widemann A, Del Re N, Middleton T, Deljanin E, De Stefano A (2008) Characterization of pink diamonds of different origin: natural (Argyle, non-Argyle), irradiated and annealed, treated with multi-process, coated and synthetic. Diam Relat Mater 17:1169–1178. doi: 10.1016/j.diamond.2008.03.014 CrossRefGoogle Scholar
  12. Dobrinets I, Vins V, Zaitsev A (2013) HPHT-treated diamonds: diamonds forever. Springer Series in Materials Science 181, Springer, Berlin, p 257CrossRefGoogle Scholar
  13. Doherty MW, Manson NB, Neil B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL (2013) The nitrogen-vacancy colour centre in diamond. Phys Rep 528:1–45. doi: 10.1016/j.physrep.2013.02.001 CrossRefGoogle Scholar
  14. Epelboym M, DelRe N, Widemann A, Zaitsev A, Dobrinets I (2011) Characterization of some natural and treated colorless and colored diamonds. G&G 47:133Google Scholar
  15. Evans T, Qi Z (1982) The kinetics of the aggregation of nitrogen atoms in diamond. Proc R Soc Lond A381:159–178. doi: 10.1098/rspa.1982.0063 CrossRefGoogle Scholar
  16. Fisher D, Spits RA (2000) Spectroscopic evidence of GE POL HPHT-treated natural type IIa diamonds. G&G 36(1):42–49. doi: 10.5741/GEMS.36.1.42 CrossRefGoogle Scholar
  17. Fritsch E, Hainschwang T, Massi L, Rondeau B (2007) Hydrogen-related optical centers in natural diamond: an update. New Diamond Front Carbon Technol 17(2):63–89Google Scholar
  18. Gaillou E, Post J, Bassim N, Zaitsev AM, Rose T, Fries M, Stroud RM, Steele A, Butler JE (2010) Spectroscopic and microscopic characterization of color lamellae in natural pink diamonds. Diam Relat Mater 19:1207–1220. doi: 10.1016/j.diamond.2010.06.015 CrossRefGoogle Scholar
  19. Graham RJ, Buseck PR (1994) Cathodoluminescence of brown diamonds as observed by transmission electron microscopy. Philos Mag Part B 70(6):1177–1185. doi: 10.1080/01418639408240282 CrossRefGoogle Scholar
  20. Hainschwang T, Katrusha A, Vollstaedt H (2005) HPHT treatment of different classes of type I brown diamonds. J Gemmol 29(5/6):261–273. doi: 10.15506/JoG.2005.29.5.261 CrossRefGoogle Scholar
  21. Hanley PL, Kiflawi I, Lang AR (1977) On topographically identifiable sources of cathodoluminescence in natural diamonds. Philos Trans 284:329–368CrossRefGoogle Scholar
  22. Harlow GE (1998) The nature of diamonds. Cambridge University Press, CambridgeGoogle Scholar
  23. Harte B, Harris JH (1994) Lower mantle mineral associations preserved in diamonds. Mineral Mag 58A:384–385. doi: 10.1180/minmag.1994.58A.1.201 CrossRefGoogle Scholar
  24. Hayman PC, Kopylova MG, Kaminsky FV (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 149:430–445. doi: 10.1007/s00410-005-0657-8 CrossRefGoogle Scholar
  25. Hutchison MT, Hursthouse MB, Light ME (2001) Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contrib Mineral Petrol 142:119–126. doi: 10.1007/s004100100279 CrossRefGoogle Scholar
  26. Iakoubovskii K, Adriaenssens GJ (2002) Optical characterization of natural Argyle diamonds. Diam Relat Mater 11:125–131. doi: 10.1016/S0925-9635(01)00533-7 CrossRefGoogle Scholar
  27. Isaenko SI, Sukharev AE, Martins M (2003) Photoluminescence of diamonds from Brazilian placer. In: Proceedings of the 12th science conference of institute of geology of Komi Science Center, GeoPrint, Syktyvkar, pp 95–98Google Scholar
  28. Jorge MIB, Pereira ME, Thomaz MF, Davies G, Collins AT (1983) Decay times of luminescence from brown diamonds. Port Phys 14:195–210Google Scholar
  29. Kaiser W, Bond WL (1959) Nitrogen, a major impurity in common type I diamond. Phys Rev 115(4):857–863CrossRefGoogle Scholar
  30. Kaminsky F, Khachatryan G (2001) Characteristics of nitrogen and other impurities in diamonds, as revealed by infrared absorption data. Can Mineral 39:1733–1745. doi: 10.2113/gscanmin.39.6.1733 CrossRefGoogle Scholar
  31. Kaminsky F, Zakharchenko O, Davies R, Griffin W, Khachatryan-Blinova G, Shiryaev A (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140(6):734–753. doi: 10.1007/s004100000221 CrossRefGoogle Scholar
  32. Kupriyanov IN, Gusev VA, Pal’yanov Yu N, Borzdov Yu M (2000) Photochromic effect in irradiated and annealed nearly IIa type synthetic diamond. J Phys Condens Matter 12:7843–7856. doi: 10.1088/0953-8984/12/35/318 CrossRefGoogle Scholar
  33. Lindblom J, Holsa H, Papunen H, Häkkänen H (2005) Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds. Am Mineral 90:428–440. doi: 10.2138/am.2005.1681 CrossRefGoogle Scholar
  34. Mendelssohn MJ, Milledge HJ (1995) Morphological characteristics of diamond populations in relation to temperature-dependent growth and dissolution rates. Int Geol Rev 37:285–312. doi: 10.1080/00206819509465405 CrossRefGoogle Scholar
  35. Mita Y (1996) Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. Phys Rev B 53(17):11360–11364. doi: 10.1103/PhysRevB.53.11360 CrossRefGoogle Scholar
  36. Nadolinny VA, Afanasyev VP, Pokhilenko NP, Yuryeva OP, Eliseev AP, Efimova ES, Logvinova AM (1995) The possibility of using the optical properties of diamonds to diagnose their paragenesis. Dokl Ross Akad Nauk 341:516–518 (in Russian)Google Scholar
  37. Nadolinny VA, Yelisseyev AP, Yuryeva OP, Feygelson BN (1997) EPR study of the transformations in nickel containing centres at heated synthetic diamonds. Appl Magn Reson 12(4):543–554. doi: 10.1007/BF03164134 CrossRefGoogle Scholar
  38. Nadolinny VA, Yelisseyev AP, Baker JM, Newton ME, Twitchen DJ, Lawson SC, Yuryeva OP, Feigelson BN (1999) A study of 13C hyperfine structure in the EPR of nickel–nitrogen-containing centres in diamond and correlation with their optical properties. J Phys Condens Matter 11:7357–7376. doi: 10.1088/0953-8984/11/38/314 CrossRefGoogle Scholar
  39. Nadolinny V, Yuryeva O, Chepurov A, Shatsky V (2009a) Titanium ions in the diamond structure: model and experimental evidence. Appl Magn Reson 36:109–113. doi: 10.1007/s-723-009-0013-7) CrossRefGoogle Scholar
  40. Nadolinny VA, Yurjeva OP, Pokhilenko NP (2009b) EPR and luminescence data on the nitrogen aggregation in diamonds from Snap Lake dyke system. Lithos 112S:865–869. doi: 10.1016/j.lithos.2009.05.045 CrossRefGoogle Scholar
  41. Nazaré MH, Woods GS, Assunção MC (1992) The 2.526 eV luminescence band in diamond. Mater Sci Engen B 11:341–345. doi: 10.1016/0921-5107(92)90237-4 CrossRefGoogle Scholar
  42. Palyanov YN, Khokhryakov AF, Borzdov YM, Kupriyanov IN (2013) Diamond growth and morphology under the influence of impurity adsorption. Cryst Growth Des 13(12):5411–5419. doi: 10.1021/cg4013476 CrossRefGoogle Scholar
  43. Pereira E, Santos L (1993) The 2.96 eV centre in diamond. Phys B Condens Matter 185:222–227. doi: 10.1016/0921-4526(93)90241-W CrossRefGoogle Scholar
  44. Rakhmanova MI, Nadolinny VA, Yuryeva OP (2013) Impurity centers in synthetic and natural diamonds with the electron-vibrational band system at 418 nm in the luminescence spectrum. Phys Solid State 55(1):127–130CrossRefGoogle Scholar
  45. Shiryaev AA, Hutchison MT, Dembo KA, Dembo AT, Iakubovskii K, Klyuev YuA, Naletov AM (2001) High-temperature high pressure annealing of diamond: small-angle X-ray scattering and optical study. Phys B 308–310:598–603. doi: 10.1016/S0921-4526(01)00750-5 CrossRefGoogle Scholar
  46. Smith CP, Bosshard G, Ponahlo J, Hammer VMF, Klapper H, Schmetzer K (2000) GE POL diamonds: before and after. G&G 36(3):192–215. doi: 10.5741/GEMS.36.3.192 CrossRefGoogle Scholar
  47. Sobolev EV, Ilyin VE, Yuryeva OP (1969) Electron-phonon interactions in some electron-vibration bands of luminescence spectra of diamonds. Sov Phys Solid State 11:938–944Google Scholar
  48. Steeds JW, Davis TJ, Charles SJ, Hayes JM, Butler JE (1999) 3H luminescence in electron-irradiated diamond samples and its relationship to self-interstitials. Diam Relat Mater 8:1847–1852. doi: 10.1016/S0925-9635(99)00144-2 CrossRefGoogle Scholar
  49. Taylor WR, Milledge HJ (1995) Nitrogen aggregation character, thermal history and stable isotope composition of some xenolith-derived diamonds from Roberts Victor and Finch. In: 6th International kimberlite conference, Novosibirsk, Russia, pp 620–622Google Scholar
  50. Taylor WR, Jaques AL, Ridd M (1990) Nitrogen-defect aggregation characteristics of some Australian diamonds: time–temperature constraints on the source regions of pipe and alluvial diamonds. Am Mineral 75:1290–1310Google Scholar
  51. Taylor WR, Canil D, Milledge HJ (1996) Kinetics of Ib to IaA nitrogen aggregation in diamonds. Geochim Cosmochim Acta 60:4725–4733. doi: 10.1016/S0016-7037(96)00302-X CrossRefGoogle Scholar
  52. Titkov SV, Shigley JE, Breeding CM, Mineeva RM, Zudin NG, Sergeev AM (2008) Natural color purple diamonds from Siberia. G&G 44(1):56–64. doi: 10.5741/GEMS.44.1.56 CrossRefGoogle Scholar
  53. Tretiakova L (2009) Spectroscopic methods for the identification of natural yellow gem-quality diamond. Eur J Mineral 21:43–50. doi: 10.1127/0935-1221/2009/0021-1885 CrossRefGoogle Scholar
  54. Tretiakova L, Tretyakova Y (2008) Significance of spectroscopic methods for identification defects in diamonds. In: 9th International kimberlite conference, vol 1, 91KC-A-00042Google Scholar
  55. Twitchen DJ, Baker JM, Newton ME, Johnston K (2000) Identification of cobalt on a lattice site in diamond. Phys Rev B 61:9–11. doi: 10.1103/PhysRevB.61.9 CrossRefGoogle Scholar
  56. Wilding MC, Harte B, Harris JW (1991) Evidence for a deep origin for Sao Luiz diamonds. In: 5th International kimberlite conference, Araxa, Brazil, pp 456–458Google Scholar
  57. Yang Z, Liang R, Zeng X, Peng M (2012) A microscopy and FTIR and PL spectra study of polycrystalline diamonds from Mengyin kimberlite pipes. ISRN Spectrosc. doi: 10.5402/2012/871824 Google Scholar
  58. Yuryeva OP, Nadolinny VA (1986) Paramagnetic radiation defects in diamond with annealing temperature at 700 K. In: Optical spectroscopy and electron paramagnetic resonance of impurities and defects in diamond. Kiev, ISM of Ukr Acad Sci, pp 60–65 (in Russian)Google Scholar
  59. Zaitsev AM (2001) Optical properties of diamond: a data handbook. Springer, BerlinCrossRefGoogle Scholar
  60. Zedgenizov DA, Kagi H, Shatsky VS, Ragozin AL (2014) Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem Geol 363:114–124. doi: 10.1016/j.chemgeo.2013.10.033 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Olga P. Yuryeva
    • 1
    Email author
  • Mariana I. Rakhmanova
    • 1
  • Vladimir A. Nadolinny
    • 1
  • Dmitry A. Zedgenizov
    • 2
    • 3
  • Vladislav S. Shatsky
    • 2
    • 3
    • 4
  • Hiroyuki Kagi
    • 5
  • Andrey Yu. Komarovskikh
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.V.S. Sobolev Institute of Geology and Mineralogy SB RASNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.A.P. Vinogradov Institute of Geochemistry SB RASIrkutskRussia
  5. 5.Geochemical Research Center, Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations