Skip to main content

Advertisement

Log in

Serpentines, talc, chlorites, and their high-pressure phase transitions: a Raman spectroscopic study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Raman spectra of magnesian phyllosilicates belonging to the serpentine, talc, and chlorite groups have been obtained at ambient conditions, and at high pressures and up to 200 °C in order to study high-pressure transformations in the 10 GPa range. The complex and distinct Raman spectra of these minerals allow straightforward identification, which may otherwise be difficult from optical microscopy. High-pressure measurements are in good agreement with DFT calculations for talc and lizardite. Pressure-induced displacive modifications are identified in lizardite and antigorite serpentines, and in chlorite at ~4, 7 and 8 GPa, respectively, while talc shows no transition up to ~11 GPa. At high temperature, the high-pressure distortions of serpentines shift to higher pressures. Given the stability limits of these minerals, and the natural range of P–T conditions, none of the high-pressure distortions observed at high pressure are likely to occur at depth in the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auzende AL, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Miner 31:269–277

    Article  Google Scholar 

  • Balan E, Lazzeri M, Delattre S, Meheut M, Refson K, Winkler B (2007) Anharmonicity of inner-OH stretching modes in hydrous phyllosilicates: assessment from first-principles frozen-phonon calculations. Phys Chem Miner 34:621–625

    Article  Google Scholar 

  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  Google Scholar 

  • Bezacier L, Reynard B, Bass JD, Cardon H, Montagnac G (2013) High-pressure elasticity of serpentine, and seismic properties of the hydrated mantle wedge. J Geophys Res Solid Earth 118:1–9. doi:10.1002/jgrb.50076

    Article  Google Scholar 

  • Blaha JJ, Rosasco GJ (1978) Raman microprobe spectra of individuals microcrystals and fibers of talc, tremolite, and related silicate minerals. Anal Chem 50:892–896

    Article  Google Scholar 

  • Capitani GC, Stixrude L (2012) A first-principle investigation of antigorite up to 30 GPa: structural behavior under compression. Am Mineral 97:1177–1186. doi:10.2138/am.2012.3956

    Article  Google Scholar 

  • Caracas R, Bobocioiu E (2011) The WURM project-a freely available web-based repository of computed physical data for minerals. Am Mineral 96:437–443

    Article  Google Scholar 

  • Chervin JC, Canny B, Besson JM, Pruzan P (1995) A diamond anvil cell for IR microspectroscopy. Rev Sci Instrum 66:2595–2598

    Article  Google Scholar 

  • Dawson P, Hadfield CD, Wilikinson GR (1973) The polarized infrared and Raman spectra of Mg(OH)2 and Ca(OH)2. J Phys Chem Solids 34:1217–1225

    Article  Google Scholar 

  • Ehlmann BL, Mustard JF, Swayze GA, Clark RN, Bishop JL, Poulet F, Marais DJD, Roach LH, Milliken RE, Wray JJ, Barnouin-Jha O, Murchie SL (2009) Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration. J Geophys Res Planets. doi:10.1029/2009je003339

    Google Scholar 

  • Etiope G, Schoell M, Hosgormez H (2011) Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth Planet Sci Lett 310:96–104. doi:10.1016/j.epsl.2011.08.001

    Article  Google Scholar 

  • Früh-Green GL, Connolly JAD, Plas A, Kelley DS, Grobety B (2004) Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) Subseafloor Biosphere at Mid-Ocean Ranges, vol 144. AGU, Washington DC, pp 119–136

  • Gatta GD, Merlini M, Valdrè G, Liermann H-P, Nénert G, Rothkirch A, Kahlenberg V, Pavese A (2013) On the crystal structure and compressional behavior of talc: a mineral of interest in petrology and material science. Phys Chem Miner 40:145–156. doi:10.1007/s00269-012-0554-4

    Article  Google Scholar 

  • Goffe B, Michard A, Kienast JR, Le Mer O (1988) A case of abduction-related high-pressure, low-temperature metamorphism in upper crustal nappes, Arabian continental margin, Oman: P–T paths and kinematic interpretation. Tectonophysics 151:363–386

    Article  Google Scholar 

  • Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY, Allan DC (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25:478–492. http://www.abinit.org

  • Gonze X, Rignanese GM, Caracas R (2005) First-principle studies of the lattice dynamics of crystals, and related properties. Z Fur Krist 220:458–472

    Google Scholar 

  • Hilairet N, Daniel I, Reynard B (2006a) Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophys Res Lett 33:L02302

    Article  Google Scholar 

  • Hilairet N, Daniel I, Reynard B (2006b) P–V equations of state and the relative stabilities of serpentine varieties. Phys Chem Miner 33:629–637

    Article  Google Scholar 

  • Hilairet N, Reynard B, Wang YB, Daniel I, Merkel S, Nishiyama N, Petitgirard S (2007) High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318:1910–1913. doi:10.1126/science.1148494

    Article  Google Scholar 

  • Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212:417–432

    Article  Google Scholar 

  • Kawano S, Katayama I, Okazaki K (2011) Permeability anisotropy of serpentinite and fluid pathways in a subduction zone. Geology 39:939–942. doi:10.1130/g32173.1

    Article  Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Fruh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, Party ATS (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412:145–149. doi:10.1038/35084000

    Article  Google Scholar 

  • Kleppe AK, Jephcoat AP, Welch MD (2003) The effect of pressure upon hydrogen bonding in chlorite: a Raman spectroscopic study of clinochlore to 26.5 GPa. Am Mineral 88:567–573

    Google Scholar 

  • Kloprogge JT, Frost RL, Rintoul L (1999) Single crystal Raman microscopic study of the asbestos mineral chrysotile. Phys Chem Chem Phys 1:2559–2564

    Article  Google Scholar 

  • Lazarev A (1972) Vibrational spectra and structure of silicates. Consultants Bureau, New York

    Google Scholar 

  • Mao H, Xu J, Bell P (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4763–4767

    Google Scholar 

  • Mellini M, Viti C (1994) Crystal structure of lizardite-1T from Elba, Italy. Am Mineral 79:1194–1198

    Google Scholar 

  • Mookherjee M, Stixrude L (2009) Structure and elasticity of serpentine at high-pressure. Earth Planet Sci Lett 279:11–19. doi:10.1016/j.epsl.2008.12.018

    Article  Google Scholar 

  • Nestola F, Angel RJ, Zhao J, Garrido CJ, Sanchez-Vizcaino VL, Capitani G, Mellini M (2010) Antigorite equation of state and anomalous softening at 6 GPa: an in situ single-crystal X-ray diffraction study. Contrib Mineral Petrol 160:33–43. doi:10.1007/s00410-009-0463-9

    Article  Google Scholar 

  • Padron-Navarta JA, Sanchez-Vizcaino VL, Hermann J, Connolly JAD, Garrido CJ, Gomez-Pugnaire MT, Marchesi C (2013) Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos. doi:10.1016/j.lithos.2013.02.001

    Google Scholar 

  • Payne M, Teter M, Allan DC, Arias TA, Joannopoulos J (1992) Iterative minimization techniques for ab initio total-energy calculations, molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097

    Article  Google Scholar 

  • Pons M, Quitté G, Fujii T, Rosing M, Reynard B, Moynier F, Douchet C, Albarède F (2011) Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proc Natl Acad Sci 108:17639–17643. doi:10.1073/pnas.1108061108

    Article  Google Scholar 

  • Prieto A, Dubessy J, Cathelineau M (1991) Structure–composition relationships in trioctahedral chlorites: a vibrational spectroscopic study. Clays Clay Miner 39:531–539

    Article  Google Scholar 

  • Reynard B (2013) Serpentine in active subduction zones. Lithos 178:171–185. doi:10.1016/j.lithos.2012.10.012

    Article  Google Scholar 

  • Reynard B, Caracas R (2009) D/H isotopic fractionation between brucite Mg(OH)2 and water from first-principles vibrational modeling. Chem Geol 262:159–168

    Article  Google Scholar 

  • Reynard B, Wunder B (2006) High-pressure behavior of synthetic antigorite in the MgO–SiO2–H2O system from Raman spectroscopy. Am Mineral 91:459–462

    Article  Google Scholar 

  • Reynard B, Mibe K, Van de Moortele B (2011) Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth Planet Sci Lett 307:387–394. doi:10.1016/j.epsl.2011.05.013

    Article  Google Scholar 

  • Reynard B, Montagnac G, Cardon H (2012) Raman spectroscopy at high pressure and temperature for the study of the Earth’s mantle and planetary materials. In: EMU Notes in Mineralogy, vol 12. EMU and Mineralogical Society, Twickenham, pp 365–388

  • Rüpke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34. doi:10.1016/j.epsl.2004.04.018

    Article  Google Scholar 

  • Schulte M, Blake D, Hoehler T, McCollom T (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6:364–376. doi:10.1089/ast.2006.6.364

    Article  Google Scholar 

  • Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende AL (2013) Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178:197–210. doi:10.1016/j.lithos.2012.11.023

    Article  Google Scholar 

  • Simon G, Chopin C, Schenk V (1997) Near-end-member magnesiochloritoid in prograde-zoned pyrope, Dora-Maira massif, western Alps. Lithos 41:37–57

    Article  Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90. doi:10.1016/j.pepi.2010.02.004

    Article  Google Scholar 

  • Tsuchiya J (2013) A first-principles calculation of the elastic and vibrational anomalies of lizardite under pressure. Am Mineral 98:2046–2052. doi:10.2138/am.2013.4369

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    Article  Google Scholar 

  • Veithen M, Gonze X, Ghosez P (2005) Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys Rev B 71:1–14

    Google Scholar 

  • Velde B (1980) Ordering in synthetic aluminous serpentines: infrared spectra and cell dimensions. Phys Chem Miner 6:209–220

    Article  Google Scholar 

  • Welch MD, Crichton WA (2005) A high-pressure polytypic transformation in type-I chlorite. Am Mineral 90:1139–1145. doi:10.2138/am.2005.1756

    Article  Google Scholar 

  • Welch MD, Kleppe AK, Jephcoat AP (2004) Novel high-pressure behavior in chlorite: a synchrotron XRD study of clinochlore to 27 GPa. Am Mineral 89:1337–1340

    Google Scholar 

  • Zhang JS, Reynard B, Montagnac G, Bass JD (2014) Pressure-induced PbcaP2 1 /c phase transition of natural orthoenstatite: the effect of high temperature and its geophysical implications. Phys Earth Planet Inter. doi:10.1016/j.pepi.2013.09.008

    Google Scholar 

Download references

Acknowledgments

This work was supported by INSU through the national Raman facility in Lyon, and “Programme National de Planétologie.” It is a contribution of the LABEX Lyon Institute of Origins (ANR-10-LABX-0066), within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) at Université de Lyon. Calculations were performed at the PSMN center of ENS Lyon and on the Jade machine of CINES under computational grant stl2816. Richard Sedlock guided sample collection in Baja California. Joerg Hermann kindly provided the Saas-Zermatt chlorite, Marco Mellini the Elba lizardite, Stéphane Guillot the antigorite from Cuba, Ichiko Shimizu the Oeyama sample, Francis Albarède the talc from Isua, and Bruno Goffé the sudoite from Oman and clinochlore from Dora Maira. Mark Welch and an anonymous reviewer are thanked for thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Reynard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynard, B., Bezacier, L. & Caracas, R. Serpentines, talc, chlorites, and their high-pressure phase transitions: a Raman spectroscopic study. Phys Chem Minerals 42, 641–649 (2015). https://doi.org/10.1007/s00269-015-0750-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0750-0

Keywords

Navigation