Physics and Chemistry of Minerals

, Volume 42, Issue 6, pp 509–515 | Cite as

High-pressure synthesis of mesoporous stishovite: potential applications in mineral physics

  • Vincenzo StagnoEmail author
  • Manik Mandal
  • Kai Landskron
  • Yingwei Fei
Original Paper


Recently, we have described a successful synthesis route to obtain mesoporous quartz and its high-pressure polymorph coesite by nanocasting at high pressure using periodic mesostructured precursors, such as SBA-16 and FDU-12/carbon composite as starting materials. Periodic mesoporous high-pressure silica polymorphs are of particular interest as they combine transport properties and physical properties such as hardness that potentially enable the industrial use of these materials. In addition, synthesis of mesoporous crystalline silica phases can allow more detailed geology-related studies such as water/mineral interaction, dissolution/crystallization rate and the surface contribution to the associated thermodynamic stability (free energy and enthalpy) of the various polymorphs and their crossover. Here, we present results of synthesis of mesoporous stishovite from cubic large-pore periodic mesoporous silica LP-FDU-12/C composite as precursor with an fcc lattice. We describe the synthesis procedure using multi-anvil apparatus at 9 GPa (about 90,000 atm) and temperature of 500 °C. The synthetic mesoporous stishovite is, then, characterized by wide and small-angle X-ray diffraction, scanning/transmission electron microscopy and gas adsorption. Results show that this new material is characterized by accessible mesopores with wide pore size distribution, surface area of ~45 m2/g and volume of pores of ~0.15 cm3/g. Results from gas adsorption indicate that both porosity and permeability are retained at the high pressures of synthesis but with weak periodic order of the pores.


Stishovite SiO2 polymorphs Mesoporous materials FDU-12 Carbon Pore size distribution 



This work was supported as part of Energy Frontier Research in Extreme Environments Center (EFree), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science under Award Number DE-SC0001057. V.S gratefully acknowledges financial support from WDC Research Fund at the Geophysical Laboratory.

Supplementary material

269_2015_739_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 33 kb)


  1. Akasaka H, Yukutake H, Nagata Y, Funabiki T, Mizutani T, Takagi H, Fukushima Y, Juneja LR, Nanbu H, Kitahata K (2009) Selective adsorption of biladien-ab-one and zinc biladien-ab-one to mesoporous silica. Micropor Mesopor Mater 120:331–338CrossRefGoogle Scholar
  2. Bertka CM, Fei Y (1997) Mineralogy of the Martian interior up to core–mantle boundary pressures. Geophys Res 102(B3):5251CrossRefGoogle Scholar
  3. Brantley SL, White AF, Hodson ME (1999) Surface area of primary silicate minerals. Growth and dissolution. In: Jamtveit B, Meakin P (eds) Geosystems. Kluwer Academic Publishers, Dordrecht, pp 291–326Google Scholar
  4. Dachille F, Zeto RJ, Roy R (1963) Coesite and stishovite: stepwise reversal transformations. Science 140:991–993CrossRefGoogle Scholar
  5. Fan J, Yu C, Lei J, Zhang Q, Li T, Tu B, Zhou W, Zhao D (2005) Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J Am Chem Soc 127:10794CrossRefGoogle Scholar
  6. Jiang J, Jorda JL, Yu J, Baumes LA, Mugnaioli E, Diaz-Cabanas MJ, Kolb U, Corma A (2011) Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 33:1131–1134CrossRefGoogle Scholar
  7. Kaneko KJ (1994) Determination of pore size and pore size distribution: 1. Adsorbents and catalysts. J Membr Sci 96:59–89CrossRefGoogle Scholar
  8. Kim TW, Ryoo R, Kruk M, Gierszal K, Jaroniec M, Kamiya S, Terasaki O (2004) Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J Phys Chem B 108:11480–11489CrossRefGoogle Scholar
  9. Kleitz F, Czuryszkiewicz T, Solovyov L, Linden M (2006) X-ray structural modeling and gas adsorption analysis of cage-like SBA-16 silica mesophases prepared in a F127/butanol/H2O system. Chem Mater 18:5070–5079CrossRefGoogle Scholar
  10. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid–crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  11. Lapena AM, Wu J, Gross AF, Tolbert SH (2002) Using high pressure phase stability to determine the internal pressure of silica/surfactant composites. J Phys Chem B 106:11720–11724CrossRefGoogle Scholar
  12. Mandal M, Stagno V, Fei Y, Landskron K (2013) Investigation of high-pressure and temperature behavior of surfactant-containing periodic mesostructured silicas. Cryst Growth Des 13:15–18CrossRefGoogle Scholar
  13. Mohanty P, Fei Y, Landskron K (2009a) Synthesis of periodic mesoporous coesite. J Am Chem Soc 131:9638–9639CrossRefGoogle Scholar
  14. Mohanty P, Fei Y, Landskron K (2009b) On the high-pressure behavior of periodic mesoscale SBA-16 silica/carbon composites: studies at 10 GPa between 25 and 1800°C. High Press Res 29:754–763CrossRefGoogle Scholar
  15. Mohanty P, Kokoszka B, Liu C, Weinberger M, Mandal M, Stagno V, Fei Y, Landskron K (2012) Large-pore periodic mesoporous silicas with crystalline channel walls and exceptional hydrothermal stability synthesized by a general high-pressure nanocasting route. Micropor Mesopor Mater 152:214–218CrossRefGoogle Scholar
  16. Montgomery CW, Brace WF (1975) Micropores in plagioclase. Contrib Miner Petrol 52:17–28CrossRefGoogle Scholar
  17. Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R (2011) Directing zeolites into hierarchically ordered structures. Science 333:328–332CrossRefGoogle Scholar
  18. Navrotsky A (2004) Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc Natl Acad Sci USA 101:12096–12101CrossRefGoogle Scholar
  19. Nishiyama N, Seike S, Hamaguchi T, Irifune T, Matsushita M, Takahashi M, Ohfuji H, Kono Y (2012) Synthesis of nanocrystalline bulk SiO2 stishovite with very high toughness. Scripta Mater 67:955–958CrossRefGoogle Scholar
  20. Parala H, Winkler H, Kolbe M, Wohlfart A, Fischer RA, Schmechel R, von Seggern H (2000) Confinement of CdSe nanoparticles inside MCM-41. Adv Mater 12:1050–1055CrossRefGoogle Scholar
  21. Santoro M, Gorelli FA, Bini R, Salamat A, Garbarino G, Levelut C, Cambon O, Haines J (2014) Carbon enters silica forming a cristobalite-type CO2–SiO2 solid solution. Nat Commun 5:3761CrossRefGoogle Scholar
  22. Stagno V, Mandal M, Yang W, Ji C, Fei Y, Mao H-K, Landskron K (2014) Synthesis of mesostructured stishovite from FDU-12/carbon composite. Microporous Mesoporous Mater 187:145–149CrossRefGoogle Scholar
  23. Suito K, Miyoshi M, Onodera A, Shimomura O, Kikegawa T (2002) Synchrotron X-ray diffraction study of the crystallization kinetics of silica glass at high pressure and high temperature. High Temp High Press 34(2):243–250CrossRefGoogle Scholar
  24. Sun L, Yu J, Zhang H, Meng Q, Ma E, Peng C, Yang K (2007) Near-infrared luminescent mesoporous materials covalently bonded with ternary lanthanide [Er(III), Nd(III), Yb(III), Sm(III), Pr(III)] complexes. Micropor Mesopor Mater 98:156–165CrossRefGoogle Scholar
  25. Wu D, Navrotsky A (2013) Small molecule–silica interactions in porous silica structures. Geochim et Cosmochim 109:38–50CrossRefGoogle Scholar
  26. Wu J, Liu X, Tolbert SH (2000) High pressure stability in ordered mesoporous silicas: rigidity and elasticity through nanometer scale arches. J Phys Chem B 104:11837–11841CrossRefGoogle Scholar
  27. Wu J, Zhao L, Chronister EL, Tolbert SH (2002) Elasticity through nanoscale distortions in periodic surfactant templated porous silica under high pressure. J Phys Chem B 106:5613–5621CrossRefGoogle Scholar
  28. Yagi T, Akimoto S-I (1976) Direct determination of coesite-stishovite transition by in situ X-ray measurements. Tectonophysics 35:259–270CrossRefGoogle Scholar
  29. Zhang J, Li B, Utsumi W, Liebermann RC (1996) In situ X-ray observations of the coesite–stishovite transition: reversed phase boundary and kinetics. Phys Chem Miner 23:1–10CrossRefGoogle Scholar
  30. Zhao D, Feng J, Huo Q, Melosh N, Fredirckson GH, Chemlka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vincenzo Stagno
    • 1
    Email author
  • Manik Mandal
    • 2
  • Kai Landskron
    • 2
  • Yingwei Fei
    • 1
  1. 1.Geophysical LaboratoryCarnegie Institution of WashingtonWashingtonUSA
  2. 2.Department of ChemistryLehigh UniversityBethlehemUSA

Personalised recommendations