Skip to main content
Log in

Selenium substitution effect on crystal structure of stibnite (Sb2S3)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Composition dependence of the crystal structure between stibnite and antimonselite is investigated by using the single-crystal X-ray diffraction and the ab initio calculation methods to clarify the Se substitution effect on the crystal structure, especially focusing on the stereochemical behavior of Sb 5s 2 lone-pair electrons. The single-crystal X-ray diffraction measurements indicate no phase change throughout the solid solution range. The lattice parameters of a, b, c and unit cell volume are linearly increased as Se content increases. The lattice parameter variations normalized show an anisotropic expansion that the largest expansion is observed along the a-axis, followed by the c- and b-axes. The large Se atom exhibits a strong site preference for the X(1) and X(3) sites, while the small S atom prefers to occupy the X(2) site. The intra-ribbon Sb(1)–X and Sb(2)–X distances (X = S, Se) are continuously increased with the Se content. The three Sb(1)–X bond distances in the trigonal pyramids are changed within the similar range between 2.52 and 2.68 Å, while the five Sb(2)–X distances in the tetragonal pyramids vary from 2.45 to 2.59 Å, from 2.68 to 2.80 Å, and from 2.86 to 3.00 Å, respectively. With increasing Se content in the solid solution, the inter-ribbon distances where the Sb 5s 2 LPEs are located monotonously increase as well. However, the variations between the ribbons are considerably smaller than those of intra-ribbon distances. The polyhedral volumes of the Sb(1)X7 and Sb(2)X7 in which the Sb 5s 2 LPEs are accommodated constantly increase from 35.9 to 40.0 Å3 and from 34.1 to 38.8 Å3, respectively, and these eccentricity parameters decrease from 0.66 to 0.62 and from 0.57 to 0.55. As a result of ab initio calculation, the Sb 5s orbitals on the Sb(1) atoms remain almost unchanged throughout the solid solution. On the other hand, those on the Sb(2) atoms become smaller with the incorporation of Se. The result gives a more reasonable interpretation that the stereochemistry of Sb 5s 2 LPEs and the stereochemistry of the coordination polyhedra around the Sb atoms are affected by the Se substitution in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) SIR97: a new tool for crystal structure determination and refinement. J Appl Crystallogr 32:115–119

    Article  Google Scholar 

  • Anderson CA (1969) Massive sulfide deposits and volcanism. Econ Geol 64:129–146

    Article  Google Scholar 

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1990) Handbook of mineralogy vol I. Elements, sulfides, sulfosalts. Mineral Data Publishing, Tucson, p 498

    Google Scholar 

  • Balić-Žunić T, Vickovic I (1996) IVTON—program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. J Appl Crystallogr 29:305–306

    Article  Google Scholar 

  • Bayliss P, Nowacki W (1972) Refinement of the crystal structure of stibnite, Sb2S3. Z Kristallogr 135:308–315

    Article  Google Scholar 

  • Caracas R, Gonze X (2005) First-principles study of the electronic properties of A2B3 minerals, with A = Bi, Sb and B = S, Se. Phys Chem Miner 32:295–300

    Article  Google Scholar 

  • Carruthers JR, Rollett JS, Betteridge PW, Kinna D, Pearce L, Larsen A, Gabe E (1999) CRYSTALS No. 11. Chemical Crystallography Laboratory, Oxford

    Google Scholar 

  • Chen L, Zhang Q, Li D, Wang G (1993) Antimonelite: a new mineral. Acta Mineral Sin 13:7–11 (in Chinese with English abs.)

    Google Scholar 

  • Choi YC, Mandal TN, Yang WS, Lee YH, Im SH, Noh JH, Seok SI (2014) Sb2Se3-sensitized inorganic–organic heterojunction solar cells fabricated using a single-source precursor. Angew Chem Int Ed 53:1329–1333

    Article  Google Scholar 

  • Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission KS

    Google Scholar 

  • Fernández AM, Merino MG (2000) Preparation and characterization of Sb2Se3 thin films prepared by electrodeposition for photovoltaic applications. Thin Solid Films 366:202–206

    Article  Google Scholar 

  • Filip MR, Patrick CE, Giustino F (2013) GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite. Phys Rev B 87:205125

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford CT

    Google Scholar 

  • Gaines RV, Skinner HCW, Foord EE, Mason B, Rosenzweig A (1997) Dana’s new mineralogy: the system of mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th edn. Wiley, New York, p 106

    Google Scholar 

  • Higashi T (1995) Abscor–empirical absorption correction based on Fourier series approximation. Rigaku Corp, Tokyo

    Google Scholar 

  • Hofmann W (1933) Die Struktur der Minerale der Antimonitgruppe. Z Kristallogr 86:225–245

    Google Scholar 

  • Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: part I. Protein microprobe analyses of pyrite, chalcopyrite and sphalerite, and part II. Selenium levels in pyrite: comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196

    Article  Google Scholar 

  • Jambor JL, Grew ES (1994) New mineral names. Am Mineral 79:387–391

    Google Scholar 

  • Kazantsev SS, Pushcharovsky DY, Maximov BA, Molchanov NV, Werner S, Schneider J, Sapozhnikov AN (2002) Phase transitions in solid solution series bismutocolumbite–stibiocolumbite (Bi–Sb)(Nb0.79Ta0.21)O4. Z Kristallogr 217:542–549

    Article  Google Scholar 

  • Koc H, Mamedov AM, Deligoz E, Ozisik H (2012) First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds. Solid State Sci 14:1211–1220

    Article  Google Scholar 

  • Krupp RE (1988) Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350 °C. Geochim Cosmochim Acta 52:3005–3015

    Article  Google Scholar 

  • Kyono A, Kimata M (2004) Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb, Bi)2S3. Am Mineral 89:932–940

    Google Scholar 

  • Kyono A, Kimata M, Matsuhisa M, Miyashita Y, Okamoto K (2002) Low-temperature crystal structures of stibnite implying orbital overlap of Sb 5s 2 inert pair electrons. Phys Chem Miner 29:254–260

    Article  Google Scholar 

  • Liu JJ, Liu JM, Li JL, Xie H, Wang JP, Deng J, Feng C, Qi F, Zhang N (2008) Experimental synthesis of the stibnite–antimonselite solid solution series. Int Geol Rev 50:168–176

    Google Scholar 

  • Lundegaard LF, Miletich R, Balic-Zunic T, Makovicky E (2002) Equation of state and crystal structure of Sb2S3 between 0 and 10 GPa. Phys Chem Miner 30:463–468

    Article  Google Scholar 

  • Messina S, Nair MTS, Nair PK (2007) Antimony sulfide thin films in chemically deposited thin film photovoltaic cells. Thin Solid Films 515:5777–5782

    Article  Google Scholar 

  • Messina S, Nair MTS, Nair PK (2009) Antimony selenide absorber thin films in all-chemically deposited solar cells. J Electrochem Soc 156:H327–H332

    Article  Google Scholar 

  • Min MZ, Zhai JP, Wang XY, Shen BP, Wen GD, Fan T (1998) Refinement of the crystal structure for a new mineral—antimonselite. Chin Sci Bull 43:413–416

    Article  Google Scholar 

  • Patrick CE, Giustino F (2011) Structural and electronic properties of semiconductor-sensitized solar-cell interfaces. Adv Funct Mater 21:4663–4667

    Article  Google Scholar 

  • Rajpure KY, Bhosale CH (2000) Sb2S3 semiconductor-septum rechargeable storage cell. Mater Chem Phys 64:70–74

    Article  Google Scholar 

  • Rajpure KY, Bhosale CH (2002) Preparation and characterization of spray deposited photoactive Sb2S3 and Sb2Se3 thin films using aqueous and non-aqueous media. Mater Chem Phys 73:6–12

    Article  Google Scholar 

  • Scavnicar S (1960) The crystal structure of stibnite. A redetermination of atomic positions. Z Kristallogr 14:86–97

    Google Scholar 

  • Wood SA, Crerar DA, Borcsik MP (1987) Solubility of the assemblage pyrite–pyrrhotite–magnetite–sphalerite–galena–gold–stibnite–bismuthinite–argentite–molybdenite in H2O–NaCl–CO2 solutions from 200°C to 350°C. Econ Geol 82:1864–1887

    Article  Google Scholar 

  • Zheng XW, Xie Y, Zhu LY, Jiang XC, Jia YB, Song WH, Sun YP (2002) Growth of Sb2E3 (E = S, Se) polygonal tubular crystals via a novel solvent-relief-self-seeding process. Inorg Chem 41:455–461

    Article  Google Scholar 

Download references

Acknowledgments

We thank E. Makovicky and an anonymous reviewer for their constructive comments and T. Tsuchiya for editorial handling. We are grateful to N. Chino for kindly providing technical help with the EPMA analyses. The work was partially supported by a Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science (Project No. 24740352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kyono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyono, A., Hayakawa, A. & Horiki, M. Selenium substitution effect on crystal structure of stibnite (Sb2S3). Phys Chem Minerals 42, 475–490 (2015). https://doi.org/10.1007/s00269-015-0737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0737-x

Keywords

Navigation