Skip to main content

Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study

Abstract

A study of natural oxy-tourmalines belonging to the system oxy-dravite–chromo-alumino-povondraite–oxy-chromium-dravite from the Sludyanka crystalline complex (Southern Baikal region, Russia) was carried out to explore the characteristic vibrational bands in the principal (OH)-stretching frequency and their relations to the O3 anion site of the tourmaline structure. Relevant information was obtained using electron microprobe analysis (EMPA), structural refinement (SREF), infrared (IR) and Raman single-crystal spectroscopy. The studied oxy-tourmalines are characterized by the substitution Al ↔ Cr, which is accompanied by redistribution of Mg over the Y and Z sites. The occurrence of strong correlations between relative peak area intensities for two IR bands at 3,565 and 3,519 cm−1 and cation site populations derived from SREF and EMP data allowed assignment of the band at 3,565 cm−1 to the cluster [YMg ZAl Z(Al,Mg)]–O3 and the band at 3,519 cm−1 to the cluster [YCr Z(Cr,Al) Z(Cr,Al,Mg))]–O3. It appears that the combination of polarized IR and Raman spectra collected with the electric vector Ec and E//c may provide a useful characterization of the local (OH) environments around the O3 site of the tourmaline structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bosi F (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineral Mag 74:1037–1044

    Article  Google Scholar 

  2. Bosi F (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. Can Mineral 49:17–27

    Article  Google Scholar 

  3. Bosi F (2013) Bond-valence constraints around the O1 site of tourmaline. Mineral Mag 77:343–351

    Article  Google Scholar 

  4. Bosi F, Lucchesi S (2004) Crystal chemistry of the schorl-dravite series. Eur J Mineral 16:335–344

    Article  Google Scholar 

  5. Bosi F, Lucchesi S (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. Am Mineral 92:1054–1063

    Article  Google Scholar 

  6. Bosi F, Skogby H (2013) Oxy-dravite, Na(Al2Mg)(Al5Mg)(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Mineral 98:1442–1448

    Article  Google Scholar 

  7. Bosi F, Lucchesi S, Reznitskii L (2004) Crystal chemistry of the dravite–chromdravite series. Eur J Mineral 16:345–352

    Article  Google Scholar 

  8. Bosi F, Balić-Žunić T, Surour AA (2010) Crystal structure analysis of four tourmalines from the Cleopatra’s Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in the tourmaline group. Am Mineral 95:510–518

    Article  Google Scholar 

  9. Bosi F, Reznitskii L, Skogby H (2012a) Oxy-chromium-dravite, NaCr3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Mineral 97:2024–2030

    Article  Google Scholar 

  10. Bosi F, Skogby H, Agrosì G, Scandale E (2012b) Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Pietro in Campo, island of Elba, Italy. Am Mineral 97:989–994

    Article  Google Scholar 

  11. Bosi F, Skogby H, Hålenius U, Reznitskii L (2013) Crystallographic and spectroscopic characterization of Fe-bearing chromo-alumino-povondraite and its relations with oxy-chromium-dravite and oxy-dravite. Am Mineral 98:1557–1564

    Article  Google Scholar 

  12. Bosi F, Skogby H, Reznitskii L, Hålenius U (2014) Vanadio-oxy-dravite, NaV3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Mineral 99:218–224

    Article  Google Scholar 

  13. Castañeda C, Oliveira EF, Gomes N, Soares ACP (2000) Infrared study of OH in tourmaline from the elbaite-schorl series. Am Mineral 85:1503–1507

    Google Scholar 

  14. Cempírek J, Houzar S, Novák M, Groat LA, Selway JB, Šrein V (2013) Crystal structure and compositional evolution of vanadium-rich oxydravite from graphite quartzite at Bítovánky, Czech Republic. J Geosci 58:149–162

    Article  Google Scholar 

  15. Ertl A, Hughes JM, Pertlik F, Foit FF Jr, Wright SE, Brandstatter F, Marler B (2002) Polyhedron distortions in tourmaline. Can Mineral 40:153–162

    Article  Google Scholar 

  16. Fantini C, Tavares MC, Krambrock K, Moreira RL, Righi A (2014) Raman and infrared study of hydroxyl sites in natural uvite, fluor-uvite, magnesio-foitite, dravite and elbaite tourmalines. Phys Chem Miner 41:247–254

    Article  Google Scholar 

  17. Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Redox processes of iron in the tourmaline structure: example of the high-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86:239–256

    Article  Google Scholar 

  18. Foit FF Jr (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. Am Mineral 74:422–431

    Google Scholar 

  19. Gatta GD, Bosi F, McIntyre GJ, Skogby H (2014) First accurate location of two proton sites in tourmaline: a single-crystal neutron diffraction study of oxy-dravite. Mineral Mag 78:681–692

    Article  Google Scholar 

  20. Gebert W, Zemann J (1965) Messung des Ultrarot-Pleochroismus von Mineralen II. Der Pleochroismus der OH-Streckfrequenz in Turmalin. Neues Jahrb Mineral Monatsh 8:232–235

    Google Scholar 

  21. Gonzalez-Carreño T, Fernandez M, Sanz J (1988) Infrared and electron microprobe analysis of tourmalines. Phys Chem Miner 15:452–460

    Article  Google Scholar 

  22. Grice JD, Ercit TS (1993) Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. Neues Jahrb Mineral Abh 165:245–266

    Google Scholar 

  23. Hawthorne FC (1996) Structural mechanisms for light-element variations in tourmaline. Can Mineral 34:123–132

    Google Scholar 

  24. Hawthorne FC (2002) Bond-valence constraints on the chemical composition of tourmaline. Can Mineral 40:789–797

    Article  Google Scholar 

  25. Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11:201–215

    Article  Google Scholar 

  26. Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Anovitz LM, Grew ES (eds) Boron: mineralogy, petrology and geochemistry, 33. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, pp 503–557

    Google Scholar 

  27. Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow B, Uher P, Pez-zotta F (2011) Nomenclature of the tourmaline supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  28. Hoang LH, Hien NTM, Chen XB, Minh NV, Yang I-S (2011) Raman spectroscopic study of various types of tourmalines. J Raman Spec 42:1442–1446

    Article  Google Scholar 

  29. Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Google Scholar 

  30. Lussier AJ, Hawthorne FC, Aguiar PM, Michaelis VK, Kroeker S (2011) Elbaite–liddicoatite from Black Rapids glacier, Alaska. Period Mineral 80:57–73

    Google Scholar 

  31. Martìnez-Alonso S, Rustad JR, Goetz AFH (2002) Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: main physical factors governing the OH vibrations. Am Mineral 87:1224–1234

    Google Scholar 

  32. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum, New York, pp 31–75

    Chapter  Google Scholar 

  33. Reznitskii L, Clark CM, Hawthorne FC, Grice JD, Skogby H, Hålenius U, Bosi F (2014) Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Mineral 99:1767–1773

    Article  Google Scholar 

  34. Sheldrick GM (2013) SHELXL2013. University of Göttingen, Germany

    Google Scholar 

  35. Skogby H, Bosi F, Lazor P (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Phys Chem Miner 39:811–816

    Article  Google Scholar 

  36. Wright SE, Foley JA, Hughes JM (2000) Optimization of site occupancies in minerals using quadratic programming. Am Mineral 85:524–531

    Google Scholar 

Download references

Acknowledgments

Chemical analyses were done with the kind assistance of M. Serracino to whom the authors express their gratitude. L. Reznitskii was supported by a grant from the Russian Foundation for Basic Research (Project 13-05-00258). We thank the reviewers D. Henry and J. Cempirek for their useful suggestions that improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Bosi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bosi, F., Skogby, H., Lazor, P. et al. Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Phys Chem Minerals 42, 441–453 (2015). https://doi.org/10.1007/s00269-015-0735-z

Download citation

Keywords

  • Tourmaline
  • Electron microprobe
  • Crystal structure refinement
  • Infrared spectroscopy
  • Raman spectroscopy
  • Short-range arrangement