Skip to main content

Advertisement

Log in

In situ high-pressure synchrotron X-ray powder diffraction study of tunnel manganese oxide minerals: hollandite, romanechite, and todorokite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In situ high-pressure synchrotron X-ray powder diffraction study of three tunnel manganese oxide minerals (hollandite with 2 × 2 MnO6 octahedra tunnels, romanechite with 2 × 3 tunnels, and todorokite with 3 × 3 tunnels) was performed using a diamond anvil cell and nominally penetrating alcohol and water mixture as a pressure-transmitting medium up to ~8 GPa. Bulk moduli (B 0) calculated using Murnaghan’s equation of state are inversely proportional to the size of the tunnel, i.e., 134(4) GPa for hollandite (I2/m), 108(2) GPa for romanechite (C2/m), and 67(5) GPa for todorokite (P2/m). On the other hand, axial compressibilities show different elastic anisotropies depending on the size of the tunnel, i.e., \( \beta_{0}^{a} \) (a/a 0) = −0.00066(3) GPa−1, \( \beta_{0}^{b} \) (b/b 0) = 0.00179(8) GPa−1, \( \beta_{0}^{c} \) (c/c 0) = 0.00637(4) GPa−1 [c > b > a] for hollandite; \( \beta_{0}^{a} \) (a/a 0) = 0.00485(4) GPa−1, \( \beta_{0}^{b} \) (b/b 0) = 0.0016(1) GPa−1, \( \beta_{0}^{c} \) (c/c 0) = 0.00199(8) GPa−1 [a > c > b] for romanechite; and \( \beta_{0}^{a} \) (a/a 0) = 0.00826(9) GPa−1, \( \beta_{0}^{b} \) (b/b 0) = 0.0054(1) GPa−1, \( \beta_{0}^{c} \) (c/c 0) = 0.00081(8) GPa−1 [a > b > c] for todorokite. Overall, the degree of tunnel distortion increases with increasing pressure and correlates with the size of the tunnel, which is evidenced by the gradual increases in the monoclinic β angles up to 3 GPa of 0.62°, 0.8°, and 1.15° in hollandite, romanechite, and todorokite, respectively. The compression of tunnel manganese oxides is related to the tunnel distortion and the size of the tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angel RJ (2000) High-pressure structural phase transitions. Rev Mineral Geochem 39:85–104. doi:10.2138/rmg.2000.39.04

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32. doi:10.1107/S0021889806045523

    Article  Google Scholar 

  • Angel RJ, Alvaro M, Gonzalez-Platas J (2014) EosFit7c and a Fortran module (library) for equation of state calculations Zeitschrift für Kristallographie-Crystalline Materials 229:405–419. doi:10.1515/zkri-2013-1711

  • Ferroir T et al (2006) Equation of state and phase transition in KAlSi3O8 hollandite at high pressure. Am Mineral 91:327–332. doi:10.2138/am.2006.1879

    Article  Google Scholar 

  • Gatta GD, Lee Y (2014) Zeolites at high pressure: a review. Mineral Mag 78:267–291. doi:10.1180/minmag.2014.078.2.04

    Article  Google Scholar 

  • Gatta GD, Lee Y, Kao C-C (2009) Elastic behavior of vanadinite, Pb10(VO4)6Cl2, a microporous non-zeolitic mineral. Phys Chem Minerals 36:311–317. doi:10.1007/s00269-008-0279-6

    Article  Google Scholar 

  • Hazen RM, Finger LW (1982) Comparative crystal chemistry: temperature, pressure, composition, and the variation of crystal structure. Wiley, New York

  • Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc R Soc Lond A Math Phys Sci 161:220–235. doi:10.1098/rspa.1937.0142

    Article  Google Scholar 

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452. doi:10.1016/0025-5408(88)90019-0

    Article  Google Scholar 

  • Lee Y, Lee Y, Seoung D (2010) Natrolite may not be a “soda-stone” anymore: structural study of fully K-, Rb-, and Cs-exchanged natrolite. Am Mineral 95:1636–1641. doi:10.2138/am.2010.3607

    Article  Google Scholar 

  • Lee Y, Seoung D, Lee Y (2011) Natrolite is not a “soda-stone” anymore: structural study of alkali (Li+), alkaline-earth (Ca2+, Sr2+, Ba2+) and heavy metal (Cd2+, Pb2+, Ag+) cation-exchanged natrolites. Am Mineral 96:1718–1724. doi:10.2138/am.2011.3853

    Article  Google Scholar 

  • Liu L-G (1976) Synthesis of a new high-pressure phase of manganese dioxide. Earth Planet Sci Lett 29:104–106. doi:10.1016/0012-821X(76)90030-3

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Merrill L, Bassett WA (1974) Miniature diamond anvil pressure cell for single crystal X-ray diffraction studies. Rev Sci Instrum 45:290–294. doi:10.1063/1.1686607

    Article  Google Scholar 

  • Mukherjee GD, Vaidya SN, Karunakaran C (2014) High pressure and high temperature studies on manganese oxides. Phase Trans 75:557–566. doi:10.1080/01411590290029818

    Article  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci 96:3447–3454. doi:10.1073/pnas.96.7.3447

    Article  Google Scholar 

  • Post JE, Bish DL (1988) Rietveld refinement of the todorokite structure. Am Mineral 73:861–869

    Google Scholar 

  • Post JE, Von Dreele RB, Buseck PR (1982) Symmetry and cation displacements in hollandites: structure refinements of hollandite, cryptomelane and priderite. Acta Crystallogr Sect B 38:1056–1065. doi:10.1107/S0567740882004968

    Article  Google Scholar 

  • Post JE, Heaney PJ, Hanson J (2003) Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. Am Mineral 88:142–150

    Google Scholar 

  • Seoung D, Lee Y, Kao CC, Vogt T, Lee Y (2013) Super-hydrated zeolites: pressure-induced hydration in natrolites. Chemistry 19:10876–10883. doi:10.1002/chem.201300591

    Article  Google Scholar 

  • Toby B (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213. doi:10.1107/S0021889801002242

    Article  Google Scholar 

  • Turner S, Post JE (1988) Refinement of the substructure and superstructure of romanechite. Am Mineral 73:1155–1161

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Global Research Laboratory Program of the Korean Ministry of Science, ICT and Planning (MSIP). Experiments using synchrotron were supported by Pohang Accelerator Laboratory in Korea through the abroad beamtime program of Synchrotron Radiation Facility Project under the MSIP and have been performed under the approval of the NSLS. Research carried out in part at the NSLS at BNL is supported by the U.S. Department of Energy, Office of Basic Energy Sciences. GCH thanks the support from the Yonsei University Research Fund of 2014-12-0140. JEP acknowledges funding by NSF grants EAR07-45374 and EAR11-47728.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjae Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, G.C., Post, J.E. & Lee, Y. In situ high-pressure synchrotron X-ray powder diffraction study of tunnel manganese oxide minerals: hollandite, romanechite, and todorokite. Phys Chem Minerals 42, 405–411 (2015). https://doi.org/10.1007/s00269-014-0731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0731-8

Keywords

Navigation