Advertisement

Physics and Chemistry of Minerals

, Volume 42, Issue 5, pp 385–392 | Cite as

Theoretical and experimental evidence for the post-cotunnite phase transition in zirconia at high pressure

  • Daisuke Nishio-Hamane
  • Haruhiko Dekura
  • Yusuke Seto
  • Takehiko Yagi
Original Paper

Abstract

A post-cotunnite phase transition in zirconia (ZrO2) at high pressure was investigated by synchrotron X-ray diffraction measurements and ab initio calculations based on density functional theory. This study successfully demonstrated a cotunnite- to Fe2P-type phase transition. Static enthalpy difference (ΔH) calculations predicted the appearance of the Fe2P phase at 124 GPa (LDA) and 143 GPa (GGA), and experimental trials demonstrated the coexistence of the Fe2P and cotunnite phases at 175 GPa after heating to 3,000 K. Both phases were quenchable to ambient conditions. The volume of the Fe2P phase was slightly less (~Δ 0.6 %) than that of the cotunnite phase over the experimental pressure range, indicating that the Fe2P phase is the higher pressure phase. The coexistence of both phases in this study may be attributed to the slow kinetics of the phase transition resulting from the close structural relationship of the two phases. An Fe2P-type structural model can be derived by applying a simple operation to the cotunnite-type structure, consisting of a 1/2 shift of several zirconium arrangements parallel to the b-axis of the cotunnite-type unit cell. It is concluded that the high-pressure cotunnite-to-Fe2P phase transition may be a common trend in many dioxides.

Keywords

ZrO2 Fe2Cotunnite Phase relation High pressure 

Notes

Acknowledgments

High pressure and high temperature in situ X-ray data were acquired at SPring-8 (Proposal nos. 2011B1449, 2012B1344 and 2013B1141) and KEK (Proposal no. 2013G540). This work was supported by a Young Scientists B Grant (no. 23740389) from the Japan Society for the Promotion of Science.

References

  1. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal propertied from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  2. Block S, da Jornada JAH, Piermarini GJ (1985) Pressure–temperature phase diagram of zirconia. J Am Ceram Soc 68:497–499CrossRefGoogle Scholar
  3. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRefGoogle Scholar
  4. Dekura H, Tsuchiya T, Tsuchiya J (2011a) First-principles prediction of post-pyrite phase transitions in germanium dioxide. Phys Rev B 83:134114CrossRefGoogle Scholar
  5. Dekura H, Tsuchiya T, Kuwayama Y, Tsuchiya J (2011b) Theoretical and experimental evidence for a new post-cotunnite phase of titanium dioxide with significant optical absorption. Phys Rev Lett 107:045701CrossRefGoogle Scholar
  6. Desgreniers S, Lagarec K (1999) High-density ZrO2 and HfO2: crystalline structures and equation of state. Phys Rev B 59:8467–8472CrossRefGoogle Scholar
  7. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  8. Griffiths GIG, Needs RJ, Pickard CJ (2009) Post-cotunnite phase of TeO2 obtained from first-principles density-functional theory methods with random-structure searching. Phys Rev B 80:184115CrossRefGoogle Scholar
  9. Haines J, Léger JM, Hull S, Petitet JP, Pereira AS, Perottoni CA, Jornada JAH (1997) Characterization of the cotunnite-type phase of zirconia and hafnia by neutron diffraction and raman spectroscopy. J Am Ceram Soc 80:1910–1914CrossRefGoogle Scholar
  10. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871CrossRefGoogle Scholar
  11. Holmes NC, Moriarty JA, Gathers GR, Nellis WJ (1989) The equation of state of platinum to 660 GPa (6.6 Mbar). J Appl Phys 66:2962–2967CrossRefGoogle Scholar
  12. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlations effect. Phys Rev A 140:1133–1138CrossRefGoogle Scholar
  13. Léger JM, Haines J, Atouf A (1995) High-pressure transitions to a postcotunnite phase in ionic AX2 compounds. Phys Rev B 51:3902–3905CrossRefGoogle Scholar
  14. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  15. Nishio-Hamane D, Shimizu A, Nakahira R, Niwa K, Sano-Furukawa A, Okada T, Yagi T, Kikegawa T (2010) The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa. Phys Chem Miner 37:129–136CrossRefGoogle Scholar
  16. Ohtaka O, Fukui H, Fujisawa T, Kunisada T, Funakoshi K, Utsumi W, Irifune T, Kuroda K, Kikegawa T (2001) Phase relations and equations of state of ZrO2 under high temperature and high pressure. Phys Rev B 63:174108CrossRefGoogle Scholar
  17. Ohtaka O, Andrault D, Bouvier P, Schultz E, Mezouar M (2005) Phase relations and equation of state of ZrO2 to 100 GPa. J Appl Crystallogr 38:727–733CrossRefGoogle Scholar
  18. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron system. Phys Rev B 23:5048–5079CrossRefGoogle Scholar
  19. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  20. Sakai T, Ohtani E, Hirao N, Ohishi Y (2011) Eqation of state of the NaCl-B2 phase up to 304 GPa. J Appl Phys 108:084912CrossRefGoogle Scholar
  21. Sato T, Funamori N, Yagi T, Miyajima N (2005) Post-PbCl2 phase transformation in TeO2. Phys Rev B 72:092101CrossRefGoogle Scholar
  22. Seto Y, Nishio-Hamane D, Nagai T, Sata N (2010) Development of a software suite on X-ray diffraction experiments. Rev High Press Sci Technol 20:269–276CrossRefGoogle Scholar
  23. Suyama R, Ashida T, Kume S (1985) Synthesis of the orthorhombic phase of ZrO2. J Am Ceram Soc 68:314–315CrossRefGoogle Scholar
  24. Teufer G (1962) The crystal structure of tetragonal ZrO2. Acta Crystallogr 15:1187CrossRefGoogle Scholar
  25. Tsuchiya T, Tsuchiya J (2011) Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressure. Proc Natl Acad Sci USA 108:1252–1255CrossRefGoogle Scholar
  26. Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet Sci Lett 224:241–248CrossRefGoogle Scholar
  27. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalues formation. Phys Rev B 41:7892–7895CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daisuke Nishio-Hamane
    • 1
  • Haruhiko Dekura
    • 2
  • Yusuke Seto
    • 3
  • Takehiko Yagi
    • 4
  1. 1.The Institute for Solid State PhysicsThe University of TokyoKashiwaJapan
  2. 2.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  3. 3.Department of Earth and Planetary SciencesKobe UniversityKobeJapan
  4. 4.Geochemical Research Center, Graduate School of ScienceThe University of TokyoBunkyoJapan

Personalised recommendations