Advertisement

Physics and Chemistry of Minerals

, Volume 42, Issue 2, pp 143–150 | Cite as

Novodneprite (AuPb3), anyuiite [Au(Pb, Sb)2] and gold micro- and nano-inclusions within plastically deformed mantle-derived olivine from the Lherz peridotite (Pyrenees, France): a HRTEM–AEM–EELS study

  • Cristiano Ferraris
  • Jean-Pierre Lorand
Original Paper

Abstract

To contribute the problem of the missing (“invisible”) gold fraction in mantle rocks, olivine grains separated from orogenic lherzolite of the peridotite body of Lherz (Eastern Pyrenees, France) have been investigated by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). The results indicate the presence of micrometric inclusions of novodneprite, AuPb3, and anyuiite, Au(Pb,Sb)2, together with nanometric clusters of metallic gold. Both minerals have been recognised on TEM images as darker contrast inclusions and identified through selected area electron diffraction (SAED) and energy dispersive spectroscopy (EDS) analyses. Gold clusters have been indirectly identified in randomly distributed nano-sized rectangular areas that occur in TEM images obtained from the edges of olivine crystals. Within these volumes the EDS analyses reveal a constant presence of Au (0.1–0.2 wt %). High-resolution TEM (HRTEM) investigations evidence series of regularly alternating sigmoidal and ellipsoidal domains developed along [110]. The EELS investigations revealed that the Au signal (M-series lines) arises from the ellipsoidal domains. It is proposed that novodneprite and anyuiite are the result of subsolidus recrystallization of the Pyrenean lherzolites accompanied by a secondary olivine grains growth that trapped inter-granular components. Likely, a process of plastic deformation favoured the formation of edge dislocations within olivine grains and thus, the circulation through them of Au-enriched fluids. A mass balance calculation of the missing gold percentage within this lherzolite points to olivine as one of the potential hosts for about the 80 % of the “invisible” gold in form of nano-inclusions, whereas only 20 % of the whole-rock Au-budget, would be hosted within assemblages of Cu–Fe–Ni sulphides.

Keywords

Novodneprite Anyuiite Gold nano-inclusions Olivine Lherz TEM–AEM EELS 

Notes

Acknowledgments

The authors would like to thank the editor Milan Rieder for his expert handling of the paper and the two referees Nigel Cook and an anonymous one for their very fruitful criticism that helped improving the quality of the manuscript. CF is indebted to Prof. TJ White for the use of TEM and EELS instrumentation at the School of Materials Science & Engineering, NTU, Singapore.

References

  1. Alard O, Griffin WL, Lorand J-P, Pearson N, O’Reilly SY (2000) Non-chondritic HSE patterns in mantle sulfides. Nature 407:891–894CrossRefGoogle Scholar
  2. Alard O, Lorand J-P, Reisberg L, Bodinier J-L, Dautria J-M, O’Reilly SY (2011) Volatile-rich metasomatism in Montferrier xenoliths (Southern France): implications for the abundances of chalcophile and highly siderophile elements in the Sub continental Mantle. J Petrol 52:2009–2045CrossRefGoogle Scholar
  3. Barnes SJ, Prichard HZ, Cox RA, Fisher PC, Godel B (2008) The location of the chalcophile ans siderophile elements in platinum-group ore deposits (a textural, microbeam and whole rock geochemistry study): implications for the formation of ore deposits. Chem Geol 248:295–317CrossRefGoogle Scholar
  4. Becker H, Horan MF, Walker RJ, Gao S, Lorand JP, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70(17):4528–4550CrossRefGoogle Scholar
  5. Burnley PC, Cline CJII, Drue A (2013) Kinking in Mg2GeO4 olivine: an EBSD study. Am Mineral 98:927–993CrossRefGoogle Scholar
  6. Ciobanu CL, Cook NJ, Utsunomiya S, Pring A, Green L (2011) Focussed ion beam—transmission electron microscopy applications in ore mineralogy: bridging micron- and nanoscale observations. Ore Geol Rev 42:6–31CrossRefGoogle Scholar
  7. Ciobanu CL, Cook NJ, Utsunomiya S, Kogagwa M, Green L, Gilbert S, Wade B (2012) Gold-telluride nanoparticles revealed in arsenic-free pyrite. Am Mineral 97:1515–1518CrossRefGoogle Scholar
  8. Cobley CM, Xia Y (2009) Gold and nanotechnology. Elements 5:309–313CrossRefGoogle Scholar
  9. Conquéré F, Fabriès J (1984) Chemical disequilibrium and its thermal significance in spinel-peridotite from the Lherz and Freychinède ultramafic bodies (Ariège; French Pyrenees). In: Kornprobst J (ed) Kimberlites II: The mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 319–332CrossRefGoogle Scholar
  10. Cook NJ, Chryssoulis SL (1990) Concentration of “invisible gold” in the common sulfides. Can Mineral 28:1–16Google Scholar
  11. Cook NJ, Ciobanu CL, Mao JW (2009) Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton, (Hebei Province, China). Chem Geol 264:101–121CrossRefGoogle Scholar
  12. Delpech G, Lorand J-P, Grégoire M, O’Reilly SY (2012) In-situ geochemistry of chalcophile and highly siderophile elements in highly metasomatised Kerguelen mantle xenoliths (South Indian Ocean). Lithos 154:296–314CrossRefGoogle Scholar
  13. Djon MLN, Barnes S-J (2012) Changes in sulfides and platinum-group minerals with the degree of alteration in the roby, twilight, and high grade zones of the lac des iles complex, Ontario, Canada. Mineral Depos 47(8):875–896CrossRefGoogle Scholar
  14. Dusembaeva KS, Levin VL, Kotel’nikov PE, Bekenova GK (2006) Novodneprite, AuPb3, a new mineral from the Novodneprovskoe deposit (Northern Kazakhstan). Doklady Natsional’noy Akademii Nauk Respubliki Kazakhstan 5:46–50 (in Russian)Google Scholar
  15. Fabriès J, Lorand J-P, Bodinier JL, Dupuy C (1991) Evolution of the upper mantle beneath the Pyrenees: evidence from orogenic spinel lherzolite massifs. J Petrol (special Lherzolites issue), 55–76Google Scholar
  16. Fabriès J, Lorand J-P, Bodinier JL (1998) Petrogenesis of some Central and Western Pyrenean peridotite massifs. Tectonophysics 292:145–167CrossRefGoogle Scholar
  17. Ferraris C, Auchterloine G (2013) Inclusions and traces studied by TEM-AEM. In: Nieto F, Livi JJT (eds) Minerals at the nanoscale. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, London, vol 14, pp 1–47Google Scholar
  18. Ferraris C, Lorand J-P (2008) HRTEM-AEM-HAADF-STEM study of platinum-group elements within a mantle-derived Cr spinel (Lherz; North-Eastern Pyrenees, France). Earth Planet Sci Lett 276:167–174CrossRefGoogle Scholar
  19. Ferraris C, Folco L, Mellini M (2003) Sigmoidal exsolution by internal shear stress in pyroxenes from chondritic meteorites. Phys Chem Mineral 30:503–510CrossRefGoogle Scholar
  20. Fischer-Gödde M, Becker H, Wombacher F (2011) Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem Geol 280:365–383CrossRefGoogle Scholar
  21. Godel B, Barnes S-J, Maier W (2007) Platinum-group elements in sulfide minerals, Platinum-group minerals and whole-rocks of the Merensky Reef (Bushveld Complex, South Africa): implications for the formation of the reef. J Petrol 48:1569–1604CrossRefGoogle Scholar
  22. Gros M, Lorand J-P, Luguet A (2002) Analysis of platinum-group elements in geological materials using NiS-fire assay and Te-coprecipitation: the NiS dissolution step revisited. Chem Geol 185:179–191CrossRefGoogle Scholar
  23. Hart S, Gaetani G (2006) Mantle Pb paradoxes: the sulfide solution. Contrib Mineral Petrol 152:295–308CrossRefGoogle Scholar
  24. Holwell DA, McDonald IE (2007) Distribution of platinum-group elements in the Platreef atOverysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study. Contr Miner Petrol 154:171–190CrossRefGoogle Scholar
  25. Jones JH, Hart SR, Benjamin TM (1993) Experimental partitioning studies near the Fe–FeS eutectic, with an emphasis on elements important to iron meteorite chronologies—Pb, Ag, Pd and Tl. Geochim Cosmochim Acta 57:453–460CrossRefGoogle Scholar
  26. Large RR, Maslennikov VV, Robert F, Danyushevsky LV, Chang Z (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Econ Geol 102:1233–1267CrossRefGoogle Scholar
  27. Large RR, Danyushevsky L, Hollit C et al (2009) Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol 104:635–668CrossRefGoogle Scholar
  28. Le Roux V, Tommasi A, Vauchez A (2008) Feedback between melt percolation and deformation in an exhumed lithosphere-asthenosphere boundary. Earth Planet Sci Lett 274:401–413CrossRefGoogle Scholar
  29. Lorand J-P (1989) Abundance and distribution of Cu–Fe–Ni sulfides, sulfur, copper and Platinum-group elements in orogenic-type spinel peridotites of Ariège (Northeastern Pyrenees, France). Earth Planet Sci Lett 93:50–64CrossRefGoogle Scholar
  30. Lorand J-P, Alard O (2001) Geochemistry of platinum-group elements in the sub-continental lithospheric mantle; in situ and whole-rock analyses of some spinel peridotite xenoliths, Massif Central, France. Geochim Cosmochim Acta 65:2789–2806CrossRefGoogle Scholar
  31. Lorand J-P, Alard O (2011) Pyrite tracks assimilation of crustal sulfur in some Pyrenean lherzolites. Mineral Petrol 101:115–128CrossRefGoogle Scholar
  32. Lorand J-P, Pattou L, Gros M (1999) Fractionation of platinum-group elements and gold in the upper mantle: a detailed study in Pyrenean orogenic lherzolites. J Petrol 40:957–981CrossRefGoogle Scholar
  33. Lorand J-P, Luguet A, Alard O, Bezos A, Meisel T (2008) Abundance and distribution of platinum-group elements in orogenic lherzolites; a case study in a Fontete Rouge lherzolite (French Pyrenees). Chem Geol 248:174–194CrossRefGoogle Scholar
  34. Lorand J-P, Alard O, Luguet A (2010) Platinum-group element micronuggets and refertilisation process in Lherz orogenic peridotite, northeastern Pyrenees (France). Earth Planet Sci Lett 289:298–310CrossRefGoogle Scholar
  35. Lorand J-P, Luguet A, Alard O (2013) Platinum-group element systematics and petrogenetic processing of the continental upper mantle: a review. Lithos 164:2–21CrossRefGoogle Scholar
  36. Luguet A, Alard O, Lorand J-P, Pearson NJ, Ryan CG, O’Reilly SY (2001) LAM-ICPMS unravel the highly siderophile element geochemistry of abyssal peridotites. Earth Planet Sci Lett 189:285–294CrossRefGoogle Scholar
  37. Luguet A, Lorand J-P, Seyler M (2003) Sulphide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45 degrees W 23 degrees 20N, MARK Area, Atlantic Ocean). Geochim Cosmochim Acta 67:1553–1570CrossRefGoogle Scholar
  38. Luguet A, Lorand J-P, Alard O, Cottin JY (2004) A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chem Geol 208:175–194CrossRefGoogle Scholar
  39. Meisel T, Moser J (2004) Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, It, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. In: Reisberg L, Lorand J-P, Alard O, Ohnenstetter M (eds) Highly siderophile elements and igneous processes. Chem Geol 208:319–338Google Scholar
  40. Mercier JCC, Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487CrossRefGoogle Scholar
  41. Morey AA, Tomkins AG, Bierlein FP, Weinberg RF, Davidson GJ (2008) Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, western Australia. Econ Geol 103:599–614CrossRefGoogle Scholar
  42. Mullane E, Alard O, Gounelle M, Russell SS (2004) Laser ablation ICP-MS study of IIIAB irons and pallasites: constraints on the behaviour of highly siderophile elements during and after planetesimal core formation. Chem Geol 208:5–28CrossRefGoogle Scholar
  43. Osbahr I, Klem R, Oberthür Th, Brätz H, Schouwstra R (2013) Platinum-group element distribution in base-metal sulfides of the Merensky Reef from the eastern and western Bushveld Complex, South Africa. Contrib Mineral Petrol 48:211–232Google Scholar
  44. Pačevski A, Moritz R, Kouzmano K, Marquardt K, Živković P, Cvetković L (2012) Texture and composition of Pb-bearing pyrite from Čoka marin polymetallic deposit, Serbia, controlled by nanoscale inclusions. Can Mineral 50:1–20CrossRefGoogle Scholar
  45. Patten C, Barnes S-J, Mathez EA, Jenner FE (2013) Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chem Geol 358:170–188CrossRefGoogle Scholar
  46. Peregoedova AV (1998) The experimental study of the Pt–Pd partitioning between monosulfide solid solution and Cu–Ni– sulfide melt at 900–840°C. In: 8th international platinum symposium abstracts. Geol Soc South Africa and South African Inst Min Metall Symposium Series S18:325–327Google Scholar
  47. Peregoedova AV, Ohnenstetter M (2002) Collectors of Pt, Pd and Rh in a S-poor Fe–Ni–Cu sulfide system at 760 & #xB0;C: experimental data and application to ore deposits. Can Mineral 40:527–561CrossRefGoogle Scholar
  48. Razin LV, Sidorenko GA (1989) Anyuiite AuPb2—a new intermetallic of gold and lead. Mineral Zhurnal 11(4):88–96 (In Russian)Google Scholar
  49. Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL, Ewing RC (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69:2781–2796CrossRefGoogle Scholar
  50. Riches AJV, Rogers NW (2011) Mineralogical and geochemical constraints on the shallow origin, ancient veining, and multi-stage modification of the Lherz peridotite. Geochim Cosmochim Acta 75:6160–6182CrossRefGoogle Scholar
  51. Sung YH, Brugger J, Ciobanu CL, Pring A, Skinner W, Nugus M (2009) Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineral Depo 44:765–791CrossRefGoogle Scholar
  52. Walker RJ (2009) Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Geochemistry 69:101–125Google Scholar
  53. Williams-Jones A-E, Bowell RJ, Migdisov AA (2009) Gold in solution. Elements 5:281–287CrossRefGoogle Scholar
  54. Wilson GC, Kilius LN, Rucklidge JC (1995) Precious metal contents of sulfide, oxide, and graphite crystals: determinations by accelerator mass spectrometry. Econ Geol 90:255–270CrossRefGoogle Scholar
  55. Wirth R, Reid D, Schreiber A (2013) Nanometer-sized Platinum-group minerals (PGM) in base metal sulfides: new evidence for an orthomagmatic origin of the Merensky Reef PGE ore deposit, Bushveld Complex, South Africa. Can Mineral 51:143–155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Muséum National d’Histoire Naturelle, CP 52, IRD UMR 206ParisFrance
  2. 2.Sorbonne Universités-UPMC Univ Paris 06, UMR CNRS 7590ParisFrance
  3. 3.Laboratoire de Planétologie et Géodynamique de Nantes, UMR 6112, Faculté des Sciences, Université de NantesNantes CedexFrance

Personalised recommendations