Skip to main content

Advertisement

Log in

PVT equation of state of spessartine–almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The pressure–volume–temperature (PVT) equation of state (EoS) of two natural garnet samples along spessartine–almandine (Spe–Alm) join has been measured at high temperature up to 800 K and high pressures up to 15.46 and 16.17 GPa for Spe64Alm36 and Spe38Alm62, respectively, using in situ angle-dispersive X-ray diffraction and diamond anvil cell. Analysis of room-temperature PV data to a third-order Birch–Murnaghan EoS yields: V 0 = 1,544.4 ± 0.4 Å3, K 0 = 180 ± 3 GPa and \( K_{0}^{{\prime }} \) = 4.0 ± 0.4 for Spe38Alm62, and V 0 = 1,557.5 ± 0.3 Å3, K 0 = 176 ± 2 GPa and \( K_{0}^{{\prime }} \) = 4.0 ± 0.3 for Spe64Alm36. Fitting of our PVT data by means of the high-temperature third-order Birch–Murnaghan EoS gives the thermoelastic parameters: V 0 = 1,544.6 ± 0.6 Å3, K 0 = 180 ± 4 GPa, \( K_{0}^{{\prime }} \) = 4.0 ± 0.4, (∂K/∂T) P  = −0.028 ± 0.005 GPa K−1 and α 0 = (3.16 ± 0.14) × 10−5 K−1 for Spe38Alm62, and V 0 = 1,557.7 ± 0.9 Å3, K 0 = 176 ± 4 GPa, \( K_{0}^{{\prime }} \) = 4.0 ± 0.5, (∂K/∂T) P  = −0.029 ± 0.005 GPa K−1 and α 0 = (3.04 ± 0.16) × 10−5 K−1 for Spe64Alm36. The results confirm that almandine content increases the bulk modulus of the spessartine–almandine join following a nearly ideal mixing model. The relation between bulk modulus and almandine mole fraction (X Alm) in this garnet join is derived to be K 0(GPa) = 171.6(±2.6) + 10.9(±1.8)X Alm. Present results are also compared with previously studies determined the thermoelastic properties of other garnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12–Mg3Al2Si3O12 and Fe4Si4O12–Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 15:90–106

    Article  Google Scholar 

  • Allred A (1961) Electronegativity values from thermochemical data. J Inorg Nucl Chem 17:215–221

    Article  Google Scholar 

  • Anderson DL, Bass JD (1984) Mineralogy and composition of the upper mantle. Geophys Res Lett 11:637–640

    Article  Google Scholar 

  • Angel R (2000) Equation of state. Rev Mineral Geochem 41:35–60

    Article  Google Scholar 

  • Anovitz LM, Essene EJ, Metz GW, Bohlen SR, Westrum EF Jr, Hemingway BS (1993) Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12. Geochim Cosmochim Acta 57:4191–4204

    Article  Google Scholar 

  • Babuška V, Fiala J, Kumazawa M, Ohno I, Sumino Y (1978) Elastic properties of garnet solid-solution series. Phys Earth Planet Inter 16:157–176

    Article  Google Scholar 

  • Bass JD (1989) Elasticity of grossular and spessartite garnets by Brillouin spectroscopy. J Geophys Res 94:7621–7628

    Article  Google Scholar 

  • Birch F (1986) Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high temperature domain. J Geophys Res 83:1257–1268

    Article  Google Scholar 

  • Conrad PG (1998) The stability of almandine at high pressure and temperature. Geophys Monogr Ser 101:393–400

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Longman, Harlow

    Google Scholar 

  • Diella V, Sani A, Levy D, Pavese A (2004) High-pressure synchrotron X-ray diffraction study of spessartine and uvarovite: a comparison between different equation of state models. Am Mineral 89:371–376

    Google Scholar 

  • Duffy TS, Anderson DL (1989) Seismic velocity in mantle minerals and mineralogy of the upper mantle. J Geophys Res 94:1895–1912

    Article  Google Scholar 

  • Dymshits AM, Litasov KD, Shatskiy A, Sharygin IS, Ohtani E, Suzuki A, Pokhilenko NP, Funakoshi K (2014) P–V–T equation of state of Na-majorite to 21 GPa and 1673 K. Phys Earth Plant Int 227:68–75

    Article  Google Scholar 

  • Fan DW, Zhou WG, Liu CQ, Liu YG, Wan F, Xing YS, Liu J, Bai LG, Xie HS (2009) The thermal equation of state of (Fe0.86Mg0.07Mn0.07)3Al2Si3O12 almandine. Mineral Mag 73:95–102

    Article  Google Scholar 

  • Fan DW, Zhou WG, Wei SY, Liu YG, Ma MN, Xie HS (2010) A simple external resistance heating diamond anvil cell and its application for synchrotron radiation X-ray diffraction. Rev Sci Instrum 81:053903

    Article  Google Scholar 

  • Fei YW, Ricolleau A, Frank M, Mibe K, Shen GY, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186

    Article  Google Scholar 

  • Gréaux S, Yamada A (2014) P–V–T equation of state of Mn3Al2Si3O12 spessartine garnet. Phys Chem Miner 41:141–149

    Article  Google Scholar 

  • Gréaux S, Kono Y, Nishiyama N, Kunimoto T, Wada K, Irifune T (2011) P–V–T equation of state of Ca3Al2Si3O12 grossular garnet. Phys Chem Miner 38:85–94

    Article  Google Scholar 

  • Gwanmesia GD, Liu J, Chen G, Kesson S, Rigden SM, Liebermann RC (2000) Elasticity of the pyrope (Mg3Al2Si3O12)–majorite (MgSiO3) garnets solid solution. Phys Chem Miner 27:445–452

    Article  Google Scholar 

  • Gwanmesia GD, Zhang J, Darling K, Kung J, Li B, Wang L, Neuville D, Liebermann RC (2006) Elasticity of polycrystalline pyrope Mg3Al2Si3O12 to 9 GPa and 1,000°C. Phys Earth Planet Inter 155:179–190

    Article  Google Scholar 

  • Gwanmesia GD, Wang L, Triplett R, Liebermann RC (2009) Pressure and temperature dependence of the elasticity of pyrope–majorite [Py60Mj40 and Py50Mj50] garnet solid solution measured by ultrasonic interferometry technique. Phys Earth Plant Inter 174:105–112

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press Res 14:235–248

    Article  Google Scholar 

  • Huang S, Chen JH (2014) Equation of state of pyrope–almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction. Phys Earth Planet Inter 228:88–91

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1987) Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet Sci Lett 86:365–376

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1993) Phase transformation in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett 117:101–110

    Article  Google Scholar 

  • Ita J, Stixrude L (1992) Petrology, elasticity, and composition of the mantle transition zone. J Geophys Res 97:6849–6866

    Article  Google Scholar 

  • Karato S, Wang Z, Liu B, Fujino K (1995) Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone. Earth Planet Sci Lett 130:13–30

    Article  Google Scholar 

  • Kono Y, Gréaux S, Higo Y, Ohfuji H, Irifune T (2010) Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1 650 K. J Earth Sci 21:782–791

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) GSAS general structure analysis system operation manual. Los Alamos Natl Lab LAUR 86–748:1–179

    Google Scholar 

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  • Léger JM, Redon AM, Chateau C (1990) Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa. Phys Chem Miner 17:161–167

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Mineral 93:1581–1584

    Article  Google Scholar 

  • Nishihara Y, Takahashi E, Matsukage KN, Iguchi T, Nakayama K, Funakoshi K (2004) Thermal equation of state (Mg0.91Fe0.09)2SiO4 ringwoodite. Phys Earth Planet Inter 143–144:33–46

    Article  Google Scholar 

  • Nishihara Y, Aoki I, Takahashi E, Matsukage KN, Funakoshi KI (2005) Thermal equation of state of majorite with MORB composition. Phys Earth Planet Inter 148:73–84

    Article  Google Scholar 

  • Nobes RH, Akhmatskaya EV, Milman V, Winkler B, Pickard CJ (2000) Structure and properties of aluminosilicate garnets and katoite: an ab initio study. Comput Mater Sci 17:141–145

    Article  Google Scholar 

  • Nyame FK (2001) Petrological significance of manganese carbonate inclusions in spessartine garnet and relation to the stability of spessartine in metamorphosed manganese rich rocks. Contrib Mineral Petrol 141:733–746

    Article  Google Scholar 

  • Pavese A, Diella V, Pischedda V, Merli M, Bocchio R, Mezouar M (2001) Pressure–volume–temperature equation of state of andradite and grossular, by high-pressure and -temperature powder diffraction. Phys Chem Miner 28:242–248

    Article  Google Scholar 

  • Pavese A, Levy D, Curetti N, Diella V, Fumagalli P, Sani A (2003) Equation of state and compressibility of phlogopite by in situ high-pressure X-ray powder diffraction. Eur J Mineral 15:455–463

    Article  Google Scholar 

  • Sani A, Quartieri S, Boscherini F, Antonioli G, Feenstra A, Geiger CA (2004) Fe2+–O and Mn2+–O bonding and Fe2+- and Mn2+-vibrational properties in synthetic almandine-spessartine solid solutions: an X-ray absorption fine structure study. Eur J Mineral 16:801–808

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Vinet P, Ferrante J, Smith JR, Rose JH (1986) A universal equation of state for solids. J Phys C: Solid State Phys 19:L467

    Article  Google Scholar 

  • Vinet P, Ferrante J, Rose JH, Smith JR (1987) Compressibility of solids. J Geophys Res 92:9319–9325

    Article  Google Scholar 

  • Wang ZC, Ji SC (2001) Elasticity of six polycrystalline silicate garnets at pressure up to 3.0 GPa. Am Miner 86:1209–1218

    Google Scholar 

  • Wang Y, Weidner DJ, Zhang J, Gwanmesia GD, Liebermann RC (1998) Thermal equation of state of garnets along the pyrope–majorite join. Phys Earth Planet Inter 105:59–71

    Article  Google Scholar 

  • Weidner DJ, Wang Y (2000) Phase transformations: implications for mantle structure. Geophys Monogr Ser 117:215–235

    Google Scholar 

  • Yagi T, Akaogi M, Shimomura O, Tamai H, Akimoto SI (1987) High pressure and high temperature equations of state of majorite. High-pressure research in mineral physics. Geophys Monogr Ser 39:141–147

    Google Scholar 

  • Zhang J (1999) Room-temperature compressibilities of MnO and CdO: further examination of the role of cation type in bulk modulus systematics. Phys Chem Miner 26:644–648

    Article  Google Scholar 

  • Zhang L, Ahsbahs H, Kutoglu A, Geiger CA (1999) Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressure. Phys Chem Miner 27:52–58

    Article  Google Scholar 

  • Zou Y, Gréaux S, Irifune T, Whitaker ML, Shinmei T, Higo Y (2012) Thermal equation of state of Mg3Al2Si3O12 pyrope garnet up to 19 GPa and 1700 K. Phys Chem Miner 39:589–598

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 41374107), the youth innovative technology talents program of Institute of Geochemistry, Chinese Academy of Sciences (2013, to Dawei Fan), the western doctor special fund of the West Light Foundation of Chinese Academy of Sciences (2011, to Dawei Fan), the Project of Major Research Plan of the National Natural Science Foundation (Grant No. 91014004). The high-pressure X-ray diffraction experiments were taken at the High Pressure Experiment Station (4W2), Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, D., Xu, J., Ma, M. et al. PVT equation of state of spessartine–almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction. Phys Chem Minerals 42, 63–72 (2015). https://doi.org/10.1007/s00269-014-0700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0700-2

Keywords

Navigation