Skip to main content
Log in

Interpretation of the EPR parameters through investigating the local lattice deformations for the two Pt3+ centers in ZnWO4

  • Review Article
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The local lattice distortions and the electron paramagnetic resonance (EPR) parameters (anisotropic g factors and the hyperfine structure constants) for the two Pt3+ centers in ZnWO4 are theoretically investigated by utilizing the perturbation formulas of these parameters for a 5d 7 ion under rhombically elongated and compressed octahedra. The elongated (and compressed) centers are ascribed to the [PtO6]9− clusters on Zn2+ site suffering the axial elongation of 0.01 Å (and compression of 0.02 Å) along Z axis and the planar bond angle variations of 7.4° (and 7.8°), respectively, due to the Jahn–Teller effect. The above local lattice deformations may considerably cancel the original large axial elongation (~0.31 Å) and perpendicular rhombic angular distortion of the host [ZnO6]10− cluster and yield more regular [PtO6]9− clusters in the impurity centers. The calculated EPR parameters based on the above lattice deformations show good agreement with the experimental data, and the local structures of the impurity centers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, London

    Google Scholar 

  • Chambon F, Ratabou F, Pinel C, Cabiac A, Guillon E, Essayem N (2013) Cellulose conversion with tungstated-alumina-based catalysts: influence of the presence of platinum and mechanistic studies. ChemSusChem 6:500–507

    Article  Google Scholar 

  • Clementi E, Raimondi DL (1963) Atomic screening constants from SCF functions. J Chem Phys 38:2686–2689

    Article  Google Scholar 

  • Clementi E, Raimondi DL, Reinhardt WP (1967) Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. J Chem Phys 47:1300–1307

    Article  Google Scholar 

  • Dai Q, Song H, Bai X, Pan G, Lu S, Wang T, Ren X (2007) Photoluminescence properties of ZnWO4:Eu3+ nanocrystals prepared by a hydrothermal method. J Phys Chem C 111:7586–7592

    Article  Google Scholar 

  • Galashov EN, Gusev VA, Shlegel VN, Vasiliev YV (2009) The growth of ZnWO4 and CdWO4 single crystals from melt by the low thermal gradient Czochralski technique. Crystallogr Rep 54:689–691

    Article  Google Scholar 

  • Höchli U, Müller KA (1964) Observation of the Jahn–Teller splitting of three-valent d7 ions via Orbach relaxation. Phys Rev Lett 12:730–733

    Article  Google Scholar 

  • Hodges JA, Serway RA, Marshall SA (1966) Electron spin resonance absorption spectrum of platinum in yttrium aluminum garnet. Phys Rev 151:196–198

    Article  Google Scholar 

  • Hodgson EK, Fridovich I (1973) Reversal of the superoxide dismutase reaction. Biochem Biophys Res Commun 54:270–274

    Article  Google Scholar 

  • Hu YX, Wu SY, Wang XF, Xu P (2010) Investigations of the local lattice distortions and the EPR parameters for the orthorhombic Pt3+ center in YAG. Eur Phys J D 58:281–285

    Article  Google Scholar 

  • Kaminskii AA, Eichler HJ, Ueda K, Klassen NV, Redkin BS, Li LE, Findeisen J, Jaque D, García-Sole J, Fernández J, Balda R (1999) Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWOand CdWO4 as laser-active and stimulated raman scattering-active crystals. Appl Opt 38:4533–4547

    Article  Google Scholar 

  • Kang SJ, Hwang YS, Park JM, Chae GH, Kim S, Cheon JK (2013) Scintillation properties and luminescence response of the ZnWO4 crystal to γ and proton beams. J Korean Chem Soc 63:1446–1972

    Google Scholar 

  • Kennedy TA, Glaser ER, Klein PB, Bhargava RN (1995) Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals. Phys Rev B 52:14356–14359

    Article  Google Scholar 

  • Koh AK, Miller DJ (1985) Hyperfine coupling constants and atomic parameters for electron paramagnetic resonance data. At Data Nucl Data Tables 33:235–253

    Article  Google Scholar 

  • Kuznetsova LI, Kazbanova AV, Kuznetsov PN (2012) Textural properties and crystalline structure of tungstated zirconia, a catalyst for isomerization of lower alkanes. Pet Chem 52:341–345

    Article  Google Scholar 

  • Leng XS, Dai L, Chao X, Xu YH, Jin XT (2014) Growth and scintillation properties of doped ZnWO4 crystals. Optics 125:1267–1270

    Google Scholar 

  • Li CY, Du XD, Yue D, Gao JN, Wang ZL (2013) Full-color emission based ZnWO4 spherical nanoparticles through doping of rare earth ions. Mater Lett 108:257–560

    Article  Google Scholar 

  • Lim CS (2011) Preparation of ZnWO4 nanopowders and its bulk type single crystal growth by the Czochralski method. Asian J Chem 23:2250–2256

    Google Scholar 

  • Lin J, Lin J, Zhu Y (2007) Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance. Inorg Chem 46:8372–8378

    Article  Google Scholar 

  • McGarvey BR (1967) The isotropic hyperfine interaction. J Phys Chem 71:51–66

    Article  Google Scholar 

  • Morrison CA (1992) Crystal field for transition metal ions in laser host materials. Springer, Berlin

    Book  Google Scholar 

  • Newman DJ, Ng B (1989) The superposition model of crystal fields. Rep Prog Phys 52:699–762

    Article  Google Scholar 

  • Newman DJ, Pryce DC, Runciman WA (1978) Superposition model analysis of the near infrared spectrum of Fe2+ in pyrope-almandine garnets. Am Miner 63:1278–1281

    Google Scholar 

  • Qamar M, Khan A (2014) Mesoporous hierarchical bismuth tungstate as a highly efficient visible-light-driven photocatalyst. RSC Adv 4:9542–9550

    Article  Google Scholar 

  • Raizman A, Schoenberg A, Suss JT (1979) Jahn–Teller effect in the EPR spectrum of Pt3+ in MgO. Phys Rev B 20:1863–1866

    Article  Google Scholar 

  • Schofield PF, Knight KS, Cressey G (1996) Neutron powder diffraction study of the scintillator material ZnWO4. J Mater Sci Lett 31:2873–2877

    Article  Google Scholar 

  • Timofeeva EV, Borzenko MI, Tsirlina GA, Astaf’ev EA, Petrii OA (2004) Mutual indirect probing of platinized platinum/tungstate nanostructural features. J Solid State Electrochem 8:778–785

    Article  Google Scholar 

  • Vanhaelst M, Matthys P, Boesman E (1977) Covalency effects in vanadium doped alkalihalides. Solid State Commun 23:535–537

    Article  Google Scholar 

  • Wang LL, Lv ZF, Kang WK, Shangguan XY, Shi JS, Hao ZH (2013) Applications oriented design of Bi3+ doped phosphors. Appl Phys Lett 102:151909-1–151909-4

    Google Scholar 

  • Watterich A, Edwards GJ, Gilliam OR, Kappers LA, Madacsi DP, Raksanyi K, Voszka R (1991) Esr of platinum impurity ions in ZnWO4 single crystals. J Phys Chem Solids 52:449–455

    Article  Google Scholar 

  • Wu SY, Gao XY, Dong HN (2006) Investigations on the angular distortions around V2+ in CsMgX3 (X = Cl, Br, I). J Magn Magn Mater 301:67–73

    Article  Google Scholar 

  • Yamaga M, Marshall A, O’Donnell KP, Henderson B (1990) Polarized photoluminescence from Cr3+ ions in laser host crystals III. ZnWO4. J Lumin 47:65–70

    Article  Google Scholar 

  • Yang ZY, Rudowicz C, Yeung YY (2004) Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals. Phys Rev B Condens Matter 348:151–159

    Article  Google Scholar 

  • Zhang HM, Wu SY, Xu P, Li LL (2010) Theoretical studies of the local structures and EPR parameters for various Rh2+ centers in AgCl. J Mol Struct Theochem 953:157–162

    Article  Google Scholar 

  • Zhang L, Wang Z, Wang L, Xing Y, Zhang Y (2013) Preparation of ZnWO4/graphene composites and its electrochemical properties for lithium-ion batteries. Mater Lett 108:9–12

    Article  Google Scholar 

  • Zhao MG, Xu JA, Bai GR, Xie HS (1983) d-orbital theory and high-pressure effects upon the EPR spectrum of ruby. Phys Rev B 27:1516–1522

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by “the Fundamental Research Funds for the Central Universities” under Granted No. ZYGX2012YB018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Chun Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, CC., Wu, SY., Kuang, MQ. et al. Interpretation of the EPR parameters through investigating the local lattice deformations for the two Pt3+ centers in ZnWO4 . Phys Chem Minerals 41, 767–774 (2014). https://doi.org/10.1007/s00269-014-0690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0690-0

Keywords

Navigation