Skip to main content
Log in

Effect of nano-hematite morphology on photocatalytic activity

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Nano-hematites, i.e., hematites with nanoparticle-, nanorod-, and nanotube-like morphologies, were synthesized via the hydrothermal method by controlling the reaction time, temperature, and reactant concentration. The nano-hematites of different crystal shapes all exhibited band gaps within the visible-light region (1.56–2.1 eV). Further, they showed weak ferromagnetic behavior, and their coercive magnetic field was larger than that of the bulk hematite. Moreover, all the nano-hematites also exhibited high photocatalytic activities during the degradation of methylene blue under visible-light irradiation. The experimental data fitted the Langmuir–Hinshelwood kinetics model very well. The nanorods had the highest photocatalytic rate constant per unit surface area, possibly owing to a higher aspect ratios; this lowers the electron–hole recombination rate. These results suggest that the crystal morphology of hematites has a significant effect on their physical and photocatalytic properties. Therefore, controlling the morphology of the materials is essential for obtaining well-tailored photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alloyeau D, Ricolleau C, Mottet C, Oikawa T, Langlois C, Bouar YL, Braidy N, Loiseau A (2009) Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nat Mater 8:940–946

    Article  Google Scholar 

  • Andersen J, Pelaez M, Guay L, Zhang ZH, Shead KO, Dionysiou DD (2013) NF-TiO2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: emerging synergies, degradation intermediates, and reusable attributes. J Hazard Mater 260:569–575

    Article  Google Scholar 

  • Bakuzis AF, Morais PC (2001) On the origin of the surface magnetic anisotropy in manganese–ferrite nanoparticles. J Magn Magn Mater 226–230:1924–1926

    Article  Google Scholar 

  • Banerjee IA, Yu LT, Matsui H (2003) Cu nanocrystal growth on peptide nanotubes by biomineralization: size control of Cu nanocrystals by tuning peptide conformation. PNAS 100(25):14678–14682

    Article  Google Scholar 

  • Behafarid F, Ono LK, Mostafa S, Croy JR, Shafai G, Hong S, Rahman TS, Bare SR, Cuenya BR (2012) Electronic properties and charge transfer phenomena in Pt nanoparticles on c-Al2O3: size, shape, support, and adsorbate effects. Phys Chem Chem Phys 14:11766–11779

    Article  Google Scholar 

  • Brunauer S, Deming LS, Deming WS, Teller E (1940) On a theory of the van der Waals adsorption of Gases. J Am Chem Soc 62:1723

    Article  Google Scholar 

  • Chen XY, Cui H, Liu P, Yang GW (2007) Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles. Appl Phys Lett 90:183118-1–183118-4

    Google Scholar 

  • Chen RF, Cheng JH, Wei Y (2012) Preparation and magnetic properties of Fe3O4 microparticles with adjustable size and morphology. J Alloys Compd 520:266–271

    Article  Google Scholar 

  • Chen Y, Zhu LH, Feng CH, Liu J, Li C, Wen SP, Ruan SP (2013) Low temperature operating In2−xNixO3 sensors with high response and good selectivity for NO2 gas. J Alloys Compd 581:653–658

    Article  Google Scholar 

  • Condon JB (2006) Surface area and porosity determinations by physisorption: measurements and theory. Elsevier, Netherlands

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, Weinheim

    Book  Google Scholar 

  • Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150

    Article  Google Scholar 

  • Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  Google Scholar 

  • Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle system. Adv Chem Phys XCVIII:283–494

  • Fan HM, Ni ZH, Feng YP, Fan XF, Kuo KL, Shen ZX, Zou BS (2007) Anisotropy of electron–phonon coupling in single wurtzite CdS nanowires. Appl Phys Lett 91:171911-1–171911-4

    Google Scholar 

  • Fan HM, Fan XF, Ni ZH, Shen ZX, Feng YP, Zou S (2008) Orientation-dependent Raman spectroscopy of single Wurtzite CdS nanowires. J Phys Chem C 112:1865–1870

    Article  Google Scholar 

  • Fan HM, You GJ, Li Y, Zheng Z, Tan HR, Shen ZX, Tang SH, Feng YP (2009) Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties. J Phys Chem C 113:9928–9935

    Article  Google Scholar 

  • Fu GT, Wu K, Jiang X, Tao L, Chen Y, Lin J, Zhou YM, Wei SH, Tang YW, Lu TH, Xia XH (2013) Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Phys Chem Chem Phys 15:3793–3802

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photocatalysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  • Gilbert B, Frandsen C, Maxey ER, Sherman DM (2009) Band-gap measurements of bulk and nanoscale hematite by soft X-ray spectroscopy. Phys Rev B 79:35108-1–35108-7

    Article  Google Scholar 

  • Gu JM, Li SH, Ju ML, Wang EB (2011) In situ carbon template-based strategy to fabricate ferrite hollow spheres and their magnetic property. J Cryst Growth 320:46–51

    Article  Google Scholar 

  • Guisbiers G, Abudukelimu G (2013) Influence of nanomorphology on the melting and catalytic properties of convex polyhedral nanoparticles. J Nanopart Res 15:1431. doi:10.1007/s11051-013-1431-x

    Article  Google Scholar 

  • Halperin WP (1986) Quantum size effects in metal particles. Rev Modern Phys 58:533–606

    Article  Google Scholar 

  • Han CW, Lim SH (2009) Variation of the magnetic energy barrier with the cell shape of nanostructured magnetic thin films. J Phys D Appl Phys 42:045006-1–045006-5

    Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  • Hosseini SA, Niaei A, Salari D, Nabavi SR (2012) Nanocrystalline AMn2O4 (A = Co, Ni, Cu) spinels for remediation of volatile organic compounds—synthesis, characterization and catalytic performance. Ceram Int 38:1655–1661

    Article  Google Scholar 

  • Kamali S, Shahmiri N, Garitaonandia JS, Ångström J, Sahlberg M, Ericsson T, Häggström L (2013) Effect of mixing tool on magnetic properties of hematite nanoparticles prepared by sol–gel method. Thin Solid Films 534:260–264

    Article  Google Scholar 

  • Kawahara T, Yamada K, Tada H (2006) Visible light photocatalytic decomposition of 2-naphthol by anodic-biased α-Fe2O3 film. J Colloid Interface Sci 294:504–507

    Article  Google Scholar 

  • Khuspe GD, Sakhare RD, Navale ST, Chougule MA, Kolekar YD, Mulik RN, Pawar RC, Lee CS, Patil VB (2013) Nanostructured SnO2 thin films forNO2 gas sensing applications. Ceram Int 39:8673–8679

    Article  Google Scholar 

  • Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    Article  Google Scholar 

  • Li LP, Li GS, Smith RL Jr, Inomata H (2000) Microstructural evolution and magnetic properties of NiFe2O4 nanocrystals dispersed in amorphous silica. Chem Mater 12:3705–3714

    Article  Google Scholar 

  • Linic S, Christopher P, Xin HL, Marimuthu A (2013) Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc Chem Res 46(8):1890–1899

    Article  Google Scholar 

  • Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer, Netherlands

    Book  Google Scholar 

  • Ma XX, Tao HQ, Feng LZ, Cheng L, Shi XZ, Li YG, Guo L, Liu Z (2012) Magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5(3):199–212

    Article  Google Scholar 

  • Mahmoodi NM, Arami M, Limaee NY, Tabrizi NS (2006) Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J Colloid Interface Sci 295:159–164

    Article  Google Scholar 

  • Mazor LP, Dakwar GR, Popov M, Kolusheva S, Shames A, Linder C, Greenberg S, Heldman E, Stepensky D, Jelinek R (2013) Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: new vehicles for magnetically targeted drug delivery. Int J Pharm 450:241–249

    Article  Google Scholar 

  • Miller JS, Calabrese JC, Rommelmann H, Chittipeddi SR, Zhang JH, Reiff WM, Epstein AJ (1987) Ferromagnetic behavior of [Fe(C5Me5)2]·+[TCNE]·−: structural and magnetic characterization of decamethylferrocenium tetracyanoethenide, [Fe(CSMe5)2]·+[TCNE]·+· MeCN, and decamethylferrocenium pentacyanopropenide, [Fe(C5Me5)2]·+ [C3(CN5)]. J Am Chem Soc 109:769–781

    Article  Google Scholar 

  • Murphy AB (2007) Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Mater Solar Cells 91:1326–1337

    Article  Google Scholar 

  • Ni XM, Zheng Z, Xiao XK, He L (2010) Silica-coated iron nanoparticles: shape-controlled synthesis, magnetism and microwave absorption properties. Mater Chem Phys 120:206–212

    Article  Google Scholar 

  • Pradhan GK, Parida KM (2011) Fabrication, growth mechanism, and characterization of γ-Fe2O3 Nanorods. Appl Mater Interface 3:317–323

    Article  Google Scholar 

  • Priya MH, Madras G (2006) Kinetics of photocatalytic degradation of phenols with multiple substituent groups. J Photochem Photobiol A Chem 179:256–262

    Article  Google Scholar 

  • Rubio D, Casanueva JF, Nebot E (2013) Improving UV seawater disinfection with immobilized TiO2: study of the viability of photocatalysis (UV254/TiO2) as seawater disinfection technology. J Photochem Photobiol A Chem 271:16–23

    Article  Google Scholar 

  • Schuler E, Gustavsson AK, Hertenberger S, Satt K (2013) Solar photocatalytic and electrokinetic studies of TiO2/Ag nanoparticle suspensions. Sol Energy 96:220–226

    Article  Google Scholar 

  • Shahroosv H, Ghorbani-asl M (2013) Solution-based synthetic strategies for Eu doped ZnO nanoparticle with enhanced red photoluminescence. J Lumin 144:223–229

    Article  Google Scholar 

  • Silva MF, Oliveira LAS, Ciciliati MA, Silva LT, Pereira BS, Hechenleitner AAW, Oliveira DMF, Pirota KR, Ivashita FF, Paesano A Jr, Pastor JM, Perez-Landazabal JI, Pineda EAG (2013) Nanometric particle size and phase controlled synthesis and characterization of γ-Fe2O3 or (α + γ)-Fe2O3 by a modified sol–gel method. J Appl Phys 114:104311-1–104311-7

    Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  • Sohn YS, Smith YR, Misra M, Subramanian VR (2008) Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes. Appl Catal B Environ 84:372–378

    Article  Google Scholar 

  • Song HJ, Li N, Yu SL (2010) Template-free synthesis of γ-Fe2O3 microcubes and their magnetic property. Micro Nano Lett 5(4):200–202

    Article  Google Scholar 

  • Sudarsanam P, Katta L, Thrimurthulu G, Reddy BM (2013) Vapor phase synthesis of cyclopentanone over nanostructured ceria–zirconia solid solution catalysts. J Ind Eng Chem 19:1517–1524

    Article  Google Scholar 

  • Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45

    Article  Google Scholar 

  • Townsend TK, Sabio EM, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling. Energy Environ Sci 4:4270–4275

    Article  Google Scholar 

  • Wang ZK, Lim HS, Liu HY, Ng HC, Kuok MH (2005) Spin waves in nickel nanorings of large aspect ratio. Phys Rev Lett 94:137208-1–137208-4

    Google Scholar 

  • Wang JM, Li C, Zhuang H, Zhang JH (2013) Photocatalytic degradation of methylene blue and inactivation of gram-negative bacteria by TiO2 nanoparticles in aqueous suspension. Food Control 34:372–377

    Article  Google Scholar 

  • Wu W, Xiao XH, Zhang SF, Zhou JA, Fan LX, Ren F, Jiang CZ (2010) Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J Phys Chem C 114:16092–16103

    Article  Google Scholar 

  • Xu WL, Bony BA, Kim CR, Baeck JS, Chang YM, Bae JE, Kim TJ, Lee GH (2013) Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine. Sci Rep 3:3210–3219

    Google Scholar 

  • Yang Y, Wu QY, Guo YH, Hu CW, Wang EB (2005) Efficient degradation of dye pollutants on nanoporous polyoxotungstate–anatase composite under visible-light irradiation. J Mol Catal A Chem 225:203–212

    Article  Google Scholar 

  • Yarahmadi SS, Wijayantha KGU, Tahir AA, Vaidhyanathan B (2009) Nanostructured γ-Fe2O3 electrodes for solar driven water splitting: effect of doping agents on preparation and performance. J Phys Chem C 113:4768–4778

    Article  Google Scholar 

  • Zhang LY, Zhang YF (2009) Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters. J Magn Magn Mater 321:L15–L20

    Article  Google Scholar 

  • Zhang ZA, Yuan YA, Shi GY, Fang YJ, Liang LH, Ding HC, Jin LT (2007) Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Environ Sci Technol 41:6259–6263

    Article  Google Scholar 

  • Zhang XT, Wan JQ, Chen KZ, Wang SX (2013) Controlled synthesis of spherical and cubic magnetite nanocrystal clusters. J Cryst Growth 372:170–174

    Article  Google Scholar 

  • Zhao ZH, Zhou ZJ, Bao JF, Wang ZY, Hu J, Chi XQ, Ni KY, Wang RF, Chen XY, Chen Z, Gao JH (2013) Octapod iron oxide nanoparticles as high performance T2 contrast agents for magnetic resonance imaging. Nat Commun 4:2266. doi:10.1038/ncomms3266

    Google Scholar 

  • Zhong JY, Cao CB (2010) Nearly monodisperse hollow Fe2O3 nanoovals: synthesis, magnetic property and applications in photocatalysis and gas sensors. Sens Actuators B 145:651–656

    Article  Google Scholar 

  • Zhou WZ (2010) Reversed crystal growth: implications for crystal engineering. Adv Mater 22:3086–3092

    Article  Google Scholar 

  • Zhu WC, Cui XL, Wang L, Liu T, Zhang Q (2011) Monodisperse porous pod-like hematite: hydrothermal formation, optical absorbance, and magnetic properties. Mater Lett 65:1003–1006

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Wei-The Jiang of the Department of Earth Sciences for the help with XRD measurements. We thank the Instrument Center of National Cheng Kung University for the SQUID measurement. We sincerely thank the National Science Council for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.H., Lin, C.C. Effect of nano-hematite morphology on photocatalytic activity. Phys Chem Minerals 41, 727–736 (2014). https://doi.org/10.1007/s00269-014-0686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0686-9

Keywords

Navigation