Physics and Chemistry of Minerals

, Volume 41, Issue 5, pp 333–340 | Cite as

High-pressure structural studies of Li x La1/3NbO3 (x = 1/6, 1/3, 1/2, 2/3)

  • O. NokedEmail author
  • A. Melchior
  • R. Shuker
  • S. Chizawa
  • H. P. Liermann
  • B. J. Kennedy
  • M. Nakayama
  • E. Sterer
Original Paper


The high-pressure behavior of Li x La1/3NbO3 (x = 1/6, 1/3, 1/2, 2/3) perovskites where Li cations were substituted for the existing vacancies was studied using synchrotron X-ray diffraction. It was shown that all these materials undergo irreversible pressure-induced amorphization around 14.5 GPa regardless of the Li concentration. The Li-inserted materials were found to exhibit a standard pressure response (bulk modulus pressure derivative B 0′ ~4) when in the crystalline phase, whereas La1/3NbO3 shows a linear volume contraction versus pressure, i.e., B 0′ ~(−1). These results suggest that the structural collapse is not a consequence of cation disorder resulting from the Nb atoms (B-site) migrating to the A-site vacancies. The observed pressure response can be understood by increased occupancy of the A-sites opposing the tilting of the NbO6 octahedra. The pressure evolution of the Nb oxidation state is discussed.


Pressure-induced amorphization Perovskite Lanthanide oxides 



Portions of this research were carried out at beamline P02.2 of the light source PETRA III at DESY, a member of the Helmholtz Association (HGF).


  1. Belous AG, Didukh IR, Novosadova EB, Pashkova EV, Khomenko BS (1990) Izv Akad Nauk SSSR. Neorg Mater 26:1294Google Scholar
  2. Bouvier P, Crichton WA, Boulova M, Lucazeau G (2002) X-ray diffraction study of WO3 at high pressure. J Phys Condens Matter 14:6605. doi: 10.1088/0953-8984/14/26/301 CrossRefGoogle Scholar
  3. Brese NE, O’Keefe M (1991) Bond-valence parameters for solids. Acta Cryst B47:192–197. doi: 10.1107/S0108768190011041 CrossRefGoogle Scholar
  4. Dilanian RA, Yamamoto A, Izumi F, Kamiyama T (2000) Crystal structures and resistivities of La1/3LixNbO3. Mol Cryst Liquid Cryst Sci Technol Sect A 341:225–230. doi: 10.1080/10587250008026144 CrossRefGoogle Scholar
  5. Galasso FS (1969) Structure, properties and preparation of perovskite-type compounds. Pergamon, OxfordGoogle Scholar
  6. Guennou M, Bouvier P, Krikler B, Kreisel J, Haumont R, Garbarino G (2010) High-pressure investigation of CaTiO3 up to 60 GPa using X-ray diffraction and Raman spectroscopy. Phys Rev B 82:134101. doi: 10.1103/PhysRevB.82.134101 CrossRefGoogle Scholar
  7. Guyot F, Reynard B (1992) Pressure-induced structural modifications and amorphization in olivine compounds. Chem Geol 96:411–420. doi: 10.1016/0009-2541(92)90069-H CrossRefGoogle Scholar
  8. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised mage or two-theta scan. High Press Res 14:235–248. doi: 10.1080/08957959608201408 CrossRefGoogle Scholar
  9. Howard CJ, Zhang Z (2003) Structures and phase transition in the layered perovskite La0.6Sr0.1TiO3: a new orthorhombic structure solved from high-resolution diffraction in combination with group theoretical analysis. J Phys Condens Matter 15:4543. doi: 10.1088/0953-8984/15/26/304 CrossRefGoogle Scholar
  10. Howard CJ, Zhang Z (2004) Structure for perovskites with layered ordering of A-site cations. Acta Cryst B60:249–251. doi: 10.1107/S0108768104003714 CrossRefGoogle Scholar
  11. Kawakami Y, Ikuta H, Wakihara MJ (1998) Ionic conduction of lithium for Perovskite-type compounds, LixLa(1 − x)/3NbO3 and (Li0.25La0.25)1 − xSr0.5xNbO3. Solid State Electrochem 2:206–210. doi: 10.1007/s100080050089 CrossRefGoogle Scholar
  12. Kennedy BJ, Howard CJ, Kubota Y, Kato K (2004) Phase transition behaviour in the A-site deficient perovskite oxide La1/3NbO3. J Solid State Chem 177:4552–4556. doi: 10.1016/j.jssc.2004.08.047 CrossRefGoogle Scholar
  13. Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Thunder BayGoogle Scholar
  14. Mumme WG, Grey IE, Roth RS, Vanderah TA (2007) Contrasting oxide crystal chemistry of Nb and Ta: the structures of the hexagonal bronzes BaTa2O6 and Ba0.93Nb2.03O6. J Solid State Chem 180:2429–2436. doi: 10.1016/j.jssc.2007.06.014 CrossRefGoogle Scholar
  15. Nadiri A, Le Flem G, Delmas C (1988) Lithium intercalation in Ln1/3NbO3 perovskite-type phases (Ln = La, Nd). J Solid State Chem 73(2):338–347. doi: 10.1016/0022-4596(88)90118-1 CrossRefGoogle Scholar
  16. Nakayama M, Imaki K, Ikuta H, Uchimoto Y, Wakihara M (2002) Electrochemical lithium insertion for perovskite oxides of LiyLa(1 − y)/3NbO3 (y = 0, 0.1, 0.25). J Phys Chem B 106:6437–6441. doi: 10.1021/jp0258659 CrossRefGoogle Scholar
  17. Nakayama M, Ikuta H, Uchimoto Y, Wakihara M, Terada Y, Miyanaga Y, Watanabe I (2003a) Changes in local structure during electrochemical Li insertion into A-site deficient perovskite oxides, La1/3NbO3. J Phys Chem B 107:10715–10721. doi: 10.1021/jp034262+ CrossRefGoogle Scholar
  18. Nakayama M, Imaki K, Ra W, Ikuta H, Uchimoto Y, Wakihra M (2003b) Using X-ray absorption spectroscopy to measure changes of electronic structure accompanying lithium insertion into the perovskite type oxides. Chem Mater 15:1728–1733. doi: 10.1021/cm020741u CrossRefGoogle Scholar
  19. Nakayama M, Wakihara M, Kobayashi Y, Miyashiro H (2005) Investigation on the arrangement of lithium ions in LixLa1/3NbO3 with perovskite structure. J Phys Chem B 109:14648–14653. doi: 10.1021/jp052142r CrossRefGoogle Scholar
  20. Nakayama M, Shirakawa J, Wakihara M (2006) Ab initio density functional study on changes in local structure in perovskite compound, LixLa1/3NbO3. Solid State Ion 177:1259–1266. doi: 10.1016/j.ssi.2006.06.028 CrossRefGoogle Scholar
  21. Navrotsky A, Weidner DJ (1989) Perovskite: a structure of great interest to geophysics and material science. American Geophysical Union, WashingtonGoogle Scholar
  22. Noked O, Yakovlev S, Greenberg Y, Garbarino G, Shuker R, Avdeev M, Sterer E (2011) Pressure-induced amorphization of La1/3NbO3. J Non-cryst Solids 357:3334–3337. doi: 10.1016/j.jnoncrysol.2011.05.030 CrossRefGoogle Scholar
  23. Noked O, Melchior A, Shuker R, Livneh T, Steininger R, Kennedy BJ, Sterer E (2013a) Pressure-induced amorphization of La1/3TaO3. J Solid State Chem 202:38–42. doi: 10.1016/j.jssc.2013.03.007 CrossRefGoogle Scholar
  24. Noked O, Melchior A, Shuker R, Steininger R, Kennedy BJ, Sterer E (2013) Pressure-induced amorphization of A-site-deficient double perovskite Ln1/3MO3 (Ln = Pr, Nd, M = Nb, Ta). Phys Chem Min 1–9. doi: 10.1007/s00269-013-0622-4
  25. Rao CNR, Raveau B (1998) Transition metal oxides, 2nd edn. VCH, New YorkGoogle Scholar
  26. Rodrí-guez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69. doi: 10.1016/0921-4526(93)90108-I CrossRefGoogle Scholar
  27. Scrosati B (1995) Challenge of portable power. Nature 373:557–558. doi: 10.1038/373557a0 CrossRefGoogle Scholar
  28. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767. doi: 10.1107/S0567739476001551 CrossRefGoogle Scholar
  29. Sterer E, Pasternak MP, Taylor RD (1990) A multipurpose miniature diamond anvil cell. Rev Sci Instrum 61:1117. doi: 10.1063/1.1141433 CrossRefGoogle Scholar
  30. Tejuco LG, Fierro JLG (1993) Properties and applications of perovskite-type oxides. Marcel Dekker, New YorkGoogle Scholar
  31. Trzesowska A, Kruszynski R, Tadeusz J, Bartczak J (2004) New bond-valence parameters for lanthanides. Acta Cryst B60:174–178. doi: 10.1107/S0108768104002678 CrossRefGoogle Scholar
  32. Vinet P, Rose JH, Ferrante J, Smith JR (1989) Universal features of the equation of state of solids. J Phys Condens Matter 1:1941. doi: 10.1088/0953-8984/1/11/002 CrossRefGoogle Scholar
  33. Wakihara M, Guohua L, Ikuta H (1998) A review of positive electrode materials for lithium-ion batteries. In: Wakihara M, Yamamoto O (eds) Lithium ion batteries, chap 2. Kodansha, TokyoGoogle Scholar
  34. Williams Q, Knittle E, Reichlin R, Martin S, Jeanloz R (1990) Structural and electronic properties of Fe2SiO4–fayalite at ultrahigh pressures: amorphization and gap closure. J Geophys Res Solid Earth 95:21549–21563. doi: 10.1029/JB095iB13p21549 CrossRefGoogle Scholar
  35. Woodward PM (1997) Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Cryst B53:44–66. doi: 10.1107/S0108768196012050 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • O. Noked
    • 1
    • 2
    Email author
  • A. Melchior
    • 1
  • R. Shuker
    • 2
  • S. Chizawa
    • 3
  • H. P. Liermann
    • 4
  • B. J. Kennedy
    • 5
  • M. Nakayama
    • 3
  • E. Sterer
    • 1
    • 6
  1. 1.Physics Department, Nuclear Research CentreNegevBeer ShevaIsrael
  2. 2.Physics DepartmentBen-Gurion UniversityBeer ShevaIsrael
  3. 3.Department of Material Science and EngineeringNagoya Institute of TechnologyNagoyaJapan
  4. 4.Petra III, P02Deutsches Elektronen SynchrotronHamburgGermany
  5. 5.School of ChemistryThe University of SydneySydneyAustralia
  6. 6.Physics DepartmentHarvard UniversityCambridgeUSA

Personalised recommendations