Skip to main content
Log in

Elastic properties of six silicate garnet end members from accurate ab initio simulations

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

An Erratum to this article was published on 29 November 2013

Abstract

The elastic properties of six silicate garnet end members, among the most important rock-forming minerals, are investigated here for the first time via accurate ab initio theoretical simulations. The Crystal program is used, which works within periodic boundary conditions and allows for all-electron basis sets to be adopted. From the computed elastic tensor, Christoffel’s equation is solved along a set of crystallographic directions in order to fully characterize the seismic wave velocity anisotropy in such materials. Polycrystalline isotropic aggregate elastic properties are derived from the computed single-crystal data via the Voigt-Reuss-Hill averaging procedure. Transferability of the elastic properties from end members to their solid solutions with different chemical compositions is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson DL (1989) Theory of the earth. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Anderson DL, Bass JD (1986) Transition region of the earth’s upper mantle. Nature 320:321–328

    Article  Google Scholar 

  • Auld BA (1973) Acoustic Fields and Waves in Solids. Krieger Publishing Company, Malabar, Florida

    Google Scholar 

  • Authier A, Zarembowitch A (2006) Elastic properties. In: Authier A (eds) International Tables for Crystallography, Vol D. Wiley, pp. 72

    Chapter  Google Scholar 

  • Babuška V, Fiala J, Kumazawa M, Ohno I, Sumino Y (1978) Elastic properties of garnet solid-solution series. Phys Earth Planet Int 16:157–176

    Article  Google Scholar 

  • Baima J, Erba A, Orlando R, Rérat M, Dovesi R (2013) Beryllium oxide nanotubes and their connection to the flat monolayer. J Phys Chem C 117:12864–12872

    Article  Google Scholar 

  • Bass JD (1986) Elasticity of uvarovite and andradite garnets. J Geophys Res 91:7505–7516

    Article  Google Scholar 

  • Bass JD (1989) Elasticity of grossular and spessartite garnets by brillouin spectroscopy. J Geophys Res 94:7621–7628

    Article  Google Scholar 

  • Bass JD, Anderson DL (1984) Composition of the upper mantle: Geophysical tests of two petrological models. Geophys Res Lett 11:229–232

    Article  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648

    Article  Google Scholar 

  • Belmonte D, Ottonello G, Zuccolini MV (2013) Melting of α-Al2O3 and vitrification of the undercooled alumina liquid: Ab initio vibrational calculations and their thermodynamic implications. J Chem Phys 138(6):064507

    Article  Google Scholar 

  • Bonczar LJ, Graham EK, Wang H (1977) The pressure and temperature dependence of the elastic constants of pyrope garnet. J Geophys Res 82:2529–2534

    Article  Google Scholar 

  • Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General considerations. J Inst Math Appl 6:76–90

    Article  Google Scholar 

  • Chai M, Brown JM, Slutsky LJ (1997) The elastic constants of a pyrope-grossular-almandine garnet to 20 GPa. Geophys Res Lett 24:523–526

    Article  Google Scholar 

  • Chen G, Miletich R, Mueller C, Spetzler HA (1997) Shear and compressional mode measurements with GHz ultrasonic interferometry and velocity-composition systematics for the pyrope-almandine solid solution series. Phys Earth Planet Int 99:273–287

    Article  Google Scholar 

  • Chen G, Cooke JA, Gwanmesia GD, Liebermann RC (1999) Elastic wave velocities of Mg3Al2Si3O13-pyrope garnet to 10 GPa. Am Miner 84:384–388

    Google Scholar 

  • Chopelas A, Reichmann HJ, Zhang L (1996) Sound velocities of five minerals to mantle pressures determined by the sideband fluorescence method. In: Dyar MD, McCammon C, Schaefer MW (eds) Mineral Spectroscopy, Geochem. Soc., Washington, D.C., pp. 229

    Google Scholar 

  • Civalleri B, D’Arco P, Orlando R, VR Saunders RD (2001) Hartree-Fock geometry optimisation of periodic systems with the crystal code. Chem Phys Lett 348:131–138

    Article  Google Scholar 

  • Dal Corso A, Posternak M, Resta R, Baldereschi A (1994) Ab initio study of piezoelectricity and spontaneous polarization in ZnO. Phys Rev B 50:10715–10721

    Article  Google Scholar 

  • D’Arco P, Freyria Fava F, R Dovesi VRS (1996) Structural and electronic properties of pyrope garnet: An ab initio study. J Phys: Condens Matter 8:8815

    Article  Google Scholar 

  • Doll K (2001) Implementation of analytical Hartree-Fock gradients for periodic systems. Comput Phys Commun 137:74–88

    Article  Google Scholar 

  • Doll K, Saunders V, Harrison N (2001) Analytical Hartree-Fock gradients for periodic systems. Int J Quantum Chem 82:1–13

    Article  Google Scholar 

  • Dovesi R, Orlando R, Civalleri B, Roetti C, Saunders VR, Zicovich-Wilson CM (2005) Crystal: a computational tool for the ab initio study of the electronic properties of crystals. Z Kristallogr 220:571–573

    Article  Google Scholar 

  • Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Doll K, Harrison NM, Civalleri B, Bush IJ, D’Arco P, Llunell M (2010) CRYSTAL09 User’s manual. Università di Torino, Torino, http://www.crystal.unito.it

  • Dovesi R, De La Pierre M, Ferrari AM, Pascale F, Maschio L, Zicovich-Wilson CM (2011) The IR vibrational properties of six members of the garnet family: A quantum mechanical ab initio study. Am Mineral 96:1787–1798

    Article  Google Scholar 

  • Duffy TS, Anderson DL (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J Geophys Res 94:1895–1912

    Article  Google Scholar 

  • Erba A, Dovesi R (2013) Photoelasticity of crystals from theoretical simulations. Phys Rev B 88:045121

    Article  Google Scholar 

  • Erba A, El-Kelany KE, Ferrero M, Baraille I, Rérat M (2013a) Piezoelectricity of SrTiO3: An ab initio description. Phys Rev B 88:035102

    Article  Google Scholar 

  • Erba A, Ferrabone M, Baima J, Orlando R, Rérat M, Dovesi R (2013b) The vibration properties of the (n,0) boron nitride nanotubes from ab initio quantum chemical simulations. J Chem Phys 138:054906

    Article  Google Scholar 

  • Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317–322

    Article  Google Scholar 

  • Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24:23–26

    Article  Google Scholar 

  • Goto T, Ohno I, Sumino Y (1976) The determination of elastic constants of natural pyrope-almandine garnet by means of rectangular parallelepiped resonance method. Phys Earth 24:149–158

    Article  Google Scholar 

  • Halleck PM (1973) The compression and compressibility of grossular garnet: a comparison of x-ray and ultrasonic methods. Ph.D. dissertation p 82

  • Hensen BJ (1976) The stability of pyrope-grossular garnet with excess silica. Contrib Mineral Petrol 55:279–292

    Article  Google Scholar 

  • Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  Google Scholar 

  • Isaak DG, Graham EK (1976) The elastic properties of an almandine-spessartine garnet and elasticity in the garnet solid solution series. J Geophys Res 81:2483–2489

    Article  Google Scholar 

  • Jiang F, Speziale S, Shieh SR, Duffy TS (2004) Single-crystal elasticity of andradite garnet to 11 GPa. J Phys:Condens Matter 16:S1041

    Article  Google Scholar 

  • Karki BB, Stixrude L, Clark SJ, Warren MC, Ackland GJ, Crain J (1997) Structure and elasticity of MgO at high pressure. Am Mineral 82:51–60

    Google Scholar 

  • Karki BB, Stixrude L, Wentzcovitch RM (2001) High-pressure elastic properties of major materials of earth’s mantle from first principles. Rev Geophys 39:507–534

    Article  Google Scholar 

  • Kawai K, Tsuchiya T (2012) First principles investigations on the elasticity and phase stability of grossular garnet. J Geophys Res Solid Earth 117:B02202

    Google Scholar 

  • Koch W, Holthausen MC (2000) A Chemist’s Guide to Density Functional Theory. Wiley-VCH Verlag, Weinheim (Federal Republic of Germany)

    Google Scholar 

  • Lacivita V, D’Arco P, Orlando R, Dovesi R, Meyer A (2013a) Anomalous birefringence in andradite-grossular solid solutions. A quantum-mechanical approach. Phys Chem Miner. doi:10.1007/s00269-013-0612-6

  • Lacivita V, Erba A, Noël Y, Orlando R, D’Arco P, Dovesi R (2013b) Zinc oxide nanotubes: An ab initio investigation of their structural, vibrational, elastic, and dielectric properties. J Chem Phys 138:214706

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  • Leitner BJ, Weidner DJ, Liebermann RC (1980) Elasticity of single crystal pyrope and implications for garnet solid solution series. Phys Earth Planet Int 22:111–121

    Article  Google Scholar 

  • Li L, Weidner DJ (2011) Ab initio molecular dynamic simulation of the elasticity of Mg3Al2Si3O12 pyrope. J Earth Science 22:169–175

    Article  Google Scholar 

  • Lu C, Mao Z, Lin JF, Zhuravlev KK, Tkachev SN, Prakapenka VB (2013) Elasticity of single-crystal iron-bearing pyrope up to 20 GPa and 750 K. Earth and Planetary Science Letters 361(0):134 – 142

    Article  Google Scholar 

  • Meyer A, Pascale F, Zicovich-Wilson CM, Dovesi R (2010) Magnetic interactions and electronic structure of uvarovite and andradite garnets. an ab initio all-electron simulation with the CRYSTAL06 program. Int J Quantum Chem 110(2):338–351

    Article  Google Scholar 

  • Mittal R, Chaplot SL, Choudhury N (2001) Lattice dynamics calculations of the phonon spectra and thermodynamic properties of the aluminosilicate garnets pyrope, grossular, and spessartine M3Al2Si3O12 (M=Mg, Ca, and Mn). Phys Rev B 64:094302

    Article  Google Scholar 

  • Musgrave MJP (1970) Crystal Acoustics. Holden-Day, San Francisco, California

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  • Nye JF (1957) Physical properties of crystals. Oxford University Press, Oxford

    Google Scholar 

  • O’Neill B, Bass JD, Smyth JR, Vaughan MT (1989) Elasticity of a grossular-pyrope-almandine garnet. J Geophys Res 94:17819–17824

    Article  Google Scholar 

  • O’Neill B, Bass JD, Rossman GR, Geiger CA, Langer K (1991) Elastic properties of pyrope. Phys Chem Miner 17:617–621

    Google Scholar 

  • Ottonello G, Civalleri B, Ganguly J, Perger WF, Belmonte D, Vetuschi Zuccolini M (2010) Thermo-chemical and thermo-physical properties of the high-pressure phase anhydrous b (Mg14Si5O24): An ab-initio all-electron investigation. Am Mineral 95:563–573

    Article  Google Scholar 

  • Pascale F, Zicovich-Wilson C, Orlando R, Roetti C, Ugliengo P, Dovesi R (2005) Vibration frequencies of Mg3Al2Si3O12 pyrope. an ab initio study with the crystal code. J Phys Chem B 109:6146–6152

    Article  Google Scholar 

  • Pavese A (1999) Quasi-harmonic computer simulations of the structural behaviour and EOS of pyrope at high pressure and high temperature. Phys Chem Miner 26:649–657

    Article  Google Scholar 

  • Perger WF, Criswell J, Civalleri B, Dovesi R (2009) Ab-initio calculation of elastic constants of crystalline systems with the crystal code. Comput Phys Commun 180:1753–1759

    Article  Google Scholar 

  • Rickwood PC, Mathias M, Siebert JC (1968) A study of garnets from eclogite and peridotite xenoliths found in kimberlite. Contrib Mineral Petrol 19:271–301

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York

    Google Scholar 

  • Saghi-Szabo G, Cohen RE, Krakauer H (1998) First-principles study of piezoelectricity in PbTiO3. Phys Rev Lett 80:4321–4324

    Article  Google Scholar 

  • Shanno DF (1970) Conditioning of quasi-newton methods for function minimization. Math Comput 24:647–656

    Article  Google Scholar 

  • Sinogeikin SV, Bass JD (2000) Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Phys Earth Planet Int 120:43–62

    Article  Google Scholar 

  • Soga N (1967) Elastic constants of garnet under pressure and temperature. J Geophys Res 72:4227–4234

    Article  Google Scholar 

  • Sumino Y, Anderson LO (1982) Elastic constants of minerals. In: Carmichael RS (ed) Handbook of Physical Properties of Rocks. CRC Press, Boca Raton, Florida, pp. 39

    Google Scholar 

  • Suzuki I, Anderson OL (1983) Elasticity and thermal expansion of a natural garnet up to 1000 K. J Phys Earth 31:125–138

    Article  Google Scholar 

  • Tosoni S, Pascale F, Ugliengo P, Orlando R, Saunders VR, Dovesi R (2005) Quantum mechanical calculation of the oh vibrational frequency in crystalline solids. Mol Phys 103:2549–2558

    Article  Google Scholar 

  • Tsuchiya T, Kawamura K (2001) Systematics of elasticity: Ab initio study in b1-type alkaline earth oxides. J Chem Phys 114:10086

    Article  Google Scholar 

  • Valenzano L, Meyer A, Demichelis R, Civalleri B, Dovesi R (2009) Quantum-mechanical ab initio simulation of the Raman and IR spectra of Mn3Al2Si3O12 spessartine. Phys Chem Minerals 36(7):415–420

    Article  Google Scholar 

  • Valenzano L, Pascale F, Ferrero M, Dovesi R (2010) Ab initio quantum-mechanical prediction of the IR and Raman spectra of Ca3Cr2Si3O12 uvarovite garnet. Int J Quantum Chem 110(2):416–421

    Article  Google Scholar 

  • Verma RK (1960) Elasticity of some high-density crystals. J Geophys Res 65:757–766

    Article  Google Scholar 

  • Wang H, Simmons G (1974) Elasticity of some mantle crystal structures 3. spessartite-almandine garnet. J Geophys Res 79:2607–2613

    Article  Google Scholar 

  • Wang Z, Ji S (2001) Elasticity of six polycrystalline silicate garnets at pressure up to 3.0 GPa. Am Miner 86:1209–1218

    Google Scholar 

  • Webb SL (1989) The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa. Phys Chem Minerals 16:684–692

    Google Scholar 

  • Winkler B, Dove MT, Leslie M (1991) Static lattice energy minimization and lattice dynamics calculations on aluminosilicate minerals. Am Mineral 76:313–331

    Google Scholar 

  • Yeganeh-Haeri A, Weidner DJ, Ito E (1990) Elastic properties of the pyrope-majorite solid solution series. Geophys Res Lett 17:2453–2456

    Article  Google Scholar 

  • Zicovich-Wilson CM, Torres FJ, Pascale F, Valenzano L, Orlando R, Dovesi R (2008) Ab initio simulation of the IR spectra of pyrope, grossular, and andradite. J Comput Chem 29:2268–2278

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to express their gratitude to Dr. Donato Belmonte for kind and enlightening discussions. Ms. Elisa Albanese is kindly acknowledged for her contribution to the implementation of the Christoffel’s equation. The CINECA Award N. HP10BLSOR4-2012 is acknowledged for the availability of high-performance computing resources and support. Improvements of the Crystal09 code in its massive-parallel version was made possible thanks to the PRACE proposal no. 2011050810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Erba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erba, A., Mahmoud, A., Orlando, R. et al. Elastic properties of six silicate garnet end members from accurate ab initio simulations. Phys Chem Minerals 41, 151–160 (2014). https://doi.org/10.1007/s00269-013-0630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0630-4

Keywords

Navigation