Skip to main content

Advertisement

Log in

Structure and properties of rare earth silicates with the apatite structure at high pressure

  • Original paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The pressure-induced structural transformation of rare earth, non-stoichiometric silicates, (REE9.33(SiO4)6O2, RE = La, Ce, Nd, Eu, and Gd) with the apatite structure type, were investigated by X-ray diffraction, photoluminescence, far-infrared spectroscopy, and DFT calculations. A pressure-induced degradation of symmetry from P6 3 /m to P6 3 occurs with increasing pressure. The transition is due to the tilting of SiO4 tetrahedra and reduced symmetry constraints on one of the O atoms in the tetrahedron. The critical transition pressure increased from ~13 GPa in La9.33(SiO4)6O2 to ~25 GPa in Gd9.33(SiO4)6O2 with the decrease in lanthanide cation size. The high-pressure phase shows an unexpectedly low value for the bulk modulus over a narrow pressure range (below ~30 GPa), as compared with the low-pressure phase, especially for the structure with larger rare earth elements. High-pressure studies of alkaline earth-doped samples (Nd8 A 2(SiO4)6O2 where A = Ca, Sr) showed that the pressure for the phase transition is mainly related to the size of lanthanides that occupy the large channels along the c axis of the apatite structure type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ali R, Yashima M, Matsushita Y, Yoshioka H, Ohoyama K, Izumi F (2008) Diffusion path of oxide ions in an apatite-type ionic conductors La9.69(Si5.7Mg0.3)O26.24. Chem Mater 20:5203–5208

    Article  Google Scholar 

  • Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys Rev B 57:1505–1509

    Article  Google Scholar 

  • Ewing RC (2001) The design and evolution of nuclear-waste forms: clues from mineralogy. Can Miner 39:697–715

    Article  Google Scholar 

  • Ewing RC, Wang LM (2002) Phosphates as nuclear waste forms. Rev Miner Geochem 48:673–699

    Article  Google Scholar 

  • Hammersley A (1998) Computer program Fit 2d. ESRF, Grenoble

    Google Scholar 

  • Jones A, Slater PR, Islam MS (2008) Local defect structures and ion transport mechanisms in the oxygen-excess apatite La9.67(SiO4)6O2.5. Chem Mater 20:5055–5060

    Article  Google Scholar 

  • Kendrick E, Islam MS, Slater PR (2007) Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties. J Mater Chem 17:3104–3111

    Article  Google Scholar 

  • Kohn MJ, Cerling TE (2002) Stable isotope compositions of biological apatite. Rev Miner Geochem 48:455–488

    Article  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  • Legeros RZ, Trautz OR, Legeros JP, Klein E (1967) Apatite crystallites-effects of carbonate on morphology. Science 155:1409

    Article  Google Scholar 

  • Leon-Reina L, Losila ER, Martinez-Lara M, Bruque S, Aranda MAG (2004) Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. J Mater Chem 14:1142–1149

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Masubuchi Y, Higuchi M, Takeda T, Kikkwawa S (2006) Oxide ion conduction mechanism in RE9.33(SiO4)6O2 and Sr2RE8(SiO4)6O2 (RE = La, Nd) from neutron powder diffraction. Solid State Ionics 177:263–268

    Article  Google Scholar 

  • McClellan GH, Lehr JR (1969) Crystal chemistry investigation of natural apatites. Am Miner 54:1374

    Google Scholar 

  • Najib A, Sansom JEH, Tolchard JR, Slater PR, Islam MS (2004) Doping strategies to optimize the oxide ion conductivity in apatite-type ionic conductors. Dolton Trans 19:3106–3109

    Article  Google Scholar 

  • Nakayama S, Sakamoto M (1998) Electrical properties of new high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). J Eur Ceram Soc 18:1413–1418

    Article  Google Scholar 

  • Okudera H, Masubuchi Y, Kikkawa S, Yoshiasa A (2005) Structure of oxide ion-conducting oxyapatite, La9.33(SiO4)6O2. Solid State Ionics 176:1473–1478

    Article  Google Scholar 

  • Orera A, Kendrick E, Apperley DC, Orera VM, Slater PR (2008) Effect of oxygen content on the Si-29 NMR, Raman spectra and oxide ion conductivity of the apatite series, La8+x Sr2−x (SiO4)6O2+x/2. Dolton Trans 39:5296–5301

    Article  Google Scholar 

  • Panchmatia PM, Orera A, Kendrick E, Hanna JV, Smith ME, Slater PR, Islam MS (2010) Protonic defects and water incorporation in Si and Ge-based apatite ionic conductors. J Mater Chem 20:2766–2772

    Article  Google Scholar 

  • Panchmatia PM, Orera A, Rees GJ, Smith ME, Hanna JV, Slater PR, Islam MS (2011) Oxygen defects and nove; transport mechanisms in apatite ionic conductors: combined O-17 NMR and modeling studies. Angew Chem Int Ed 50:9328–9333

    Article  Google Scholar 

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White T (2010) Nomenclature of the apatite supergroup minerals. Euro J Miner 22:163–179

    Article  Google Scholar 

  • Rakovan J, Reeder RJ, Elzinga EJ, Cherniak DJ, Tait CD, Morris DE (2002) Structural characterization of U(VI) in apatite by X-ray absorption spectroscopy. Environ Sci Tech 36:3114–3117

    Article  Google Scholar 

  • Roisnel T, Rodriguez-Carvajal J (2000) WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater Sci Forum, Proceedings of the 7th European Powder diffraction conference (EPDIC7), pp 118–123

  • Sansom JEH, Richings D, Slater PR (2001) A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26. Solid State Ionics 139:205–210

    Article  Google Scholar 

  • Sansom JEH, Tolchard JR, Apperley D, Islam MS, Slater PR (2006) Solid state Si-29 NMR studies of apatite-type oxide ion conductors. J Mater Chem 16:1410–1413

    Article  Google Scholar 

  • Schroeder LW, Mathew M (1978) Cation ordering in Ca2La8(SiO4)6O2. J Solid State Chem 26:383–387

    Article  Google Scholar 

  • Tolchard JR, Slater PR, Islam MS (2007) Insight into doping effects in apatite silicate ionic conductors. Adv Funct Mater 17:2564–2571

    Article  Google Scholar 

  • Wakabayashi T, Kato S, Nakahara Y, Ogasawara M, Nakata S (2011) Oxidation property of Pt/La7.33BaYSi6O25.5 catalysts for hydrocarbon species. Catal Today 164:575–579

    Article  Google Scholar 

  • Weber WJ (1983) Radiation-induced swelling and amorphization in Ca2Nd8(SiO4)6O2. Rad Eff Def Solids 77:295–308

    Article  Google Scholar 

  • Weber WJ, Zhang Y, Xiao HY, Wang LM (2012) Dynamic recovery in silicate-apatite structure under irradiation and implications for long-term immobilization of actinides. RSC Adv 2:595–604

    Article  Google Scholar 

  • White T, Ferraris C, Kim J, Madhavi S (2005) Apatite-an adaptive framework structure. Rev Miner Geochem 57:307–401

    Article  Google Scholar 

  • Xiao HY, Zhang Y, Weber WJ (2012) Impact of point defects on electronic structure in Y2Ti2O7. RSC Adv 2:7235–7240

    Article  Google Scholar 

  • Xiao HY, Zhang Y, Weber WJ (2013) Thermodynamic properties of Ce x Th1−x O2 solid solution from first-principles calculations. Acta Mater 61:467–476

    Article  Google Scholar 

  • Zhang FX, Lang M, Zhang JM, Cheng ZQ, Liu ZX, Lian J, Ewing RC (2012) Phase transition and abnormal compressibility of lanthanide silicate with the apatite structure. Phys Rev B 85:214116

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001089. The use of X-ray beam line at X17C station and U2A station of NSLS is supported by NSF COMPRES EAR01-35554 and by US-DOE contract DE-AC02-10886. The use of beam 12.2 at ALS, Berkeley National Lab, was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and CPMPRES under NSF Cooperative Agreement EAR 10-43050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. X. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F.X., Xiao, H.Y., Lang, M. et al. Structure and properties of rare earth silicates with the apatite structure at high pressure. Phys Chem Minerals 40, 817–825 (2013). https://doi.org/10.1007/s00269-013-0616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0616-2

Keywords

Navigation