Skip to main content
Log in

Crystal chemistry of Sc-bearing synthetic diopsides

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Scandium substitution in the diopside structure was studied by single-crystal X-ray diffraction on a series of synthetic diopside samples. These diopsides were doped with increasing amounts of Sc3+ through a coupled substitution involving M1(Sc3+)1 M2[] T1 (B)1 M1(Mg2+)−1 M2(Ca2+)−1 T(Si4+)−1 exchange, whereby charge compensation is achieved by vacancies at the M2 sites and B at the tetrahedral sites. The substitution of scandium for magnesium at the M1 site results in an increase in volume and distortion of the M1O6 polyhedron. The accompanying creation of vacancies at the M2 sites causes an increase in the M2 polyhedral volume. The modifications of the M1 and M2 polyhedra result in an increase of the polyhedral strip along the b lattice direction and a straightening of the tetrahedral chain. The geometrical modification of the M1 polyhedron due to scandium incorporation is comparable to those observed when similar amounts of Ti3+/Ti4+ substitute for Mg in the diopside structure, suggesting a structural control on the solubility of Sc and Ti in diopside that may influence the extent of the solid solutions between the Sc and Ti end-members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnes HL (1997) Geochemistry of hydrothermal ore deposits. Wiley & Sons, New York, p 975

    Google Scholar 

  • Bruno E, Carbonin S, Molin G (1982) Crystal structures of Ca-rich clinopyroxenes on the CaMgSi2O6–Mg2Si2O6 join. Tschermaks Miner Petrol Mitt 29:223–240

    Article  Google Scholar 

  • Burns RG, Huggins FE (1973) Visible region absorption spectra of a Ti3+ fassaite from the Allende meteorite: a discussion. Am Miner 58:955–961

    Google Scholar 

  • Cameron M, Papike JJ (1981) Crystal chemistry of silicate pyroxenes. In pyroxene. Miner Soc Am Rev Miner 7:5–92

    Google Scholar 

  • Davis AM (1984) A scandalously refractory inclusion in Ornans. Meteoritics 19:214

    Google Scholar 

  • Davis AM, Hinton RW (1985) Trace element abundances in OSCAR, a scandium-rich refractory inclusion from the Ornans meteorite. Meteoritics 20:633–634

    Google Scholar 

  • Deer WA, Howie RA, Zussmann J (1978) Single chain silicates. Rock-forming minerals, vol 2A. Longman, London, p 668

    Google Scholar 

  • Dowty E, Clark JR (1973) Crystal structure refinement and optical properties of a Ti3+ fassaite from the Allende meteorite. Am Miner 58:230–242

    Google Scholar 

  • El Goresy A, Zinner E, Matsunami S, Palme H, Spettel B, Lin Y, Nazarov M (2002) Efremovka 101.1: a CAI with ultrarefractory REE patterns and enormous enrichments of Sc, Zr, and Y in fassaite and perovskite. Geochim Cosmochim Acta 66:1459–1491

    Article  Google Scholar 

  • Hålenius U, Skogby H, Eden M, Nazzareni S, Kristiansson P, Resmark J (2010) Coordination of boron in nominally boron-free rock forming silicates: evidence for incorporation of BO3 groups in clinopyroxene. Geochim Cosmochim Acta 74(19):5672–5679

    Article  Google Scholar 

  • Hall A (1996) Igneous petrology. Harlow, England, p 551

    Google Scholar 

  • Hawthorne FC, Grundy HD (1973) Refinement of the crystal structure of NaScSi2O6. Acta Crystall B2:2615–2616

    Google Scholar 

  • Hawthorne FC, Grundy HD (1977) Refinement of the crystal structure of LiScSi2O6 and structure variations in alkali pyroxenes. Can Miner 15:50–58

    Google Scholar 

  • Hawthorne FC, Burns PC and Grice JD (1996) The crystal chemistry of boron. In: Grew ES, Anovitz LM (eds) Boron mineralogy, petrology and geochemistry, Rev Miner 33:41–115

  • Hill E, Blundy JD, Wood BJ (2011) Clinopyroxene-melt trace element partitioning and the development of a predictive model for HSFE and Sc. Contrib Miner Petrol 161:423–438

    Article  Google Scholar 

  • Ito J, Frondel C (1968) Syntheses of the scandium analogues of aegirine, spodumene, andradite and melanotekite. Am Miner 53:1276–1280

    Google Scholar 

  • Ito J, Steele IM (1976) Experimental studies of Li+ + Sc3+ coupled substitution in the Mg-silicates: olivine, clinopyroxene, orthopyroxene, protopyroxene, and a new high temperature phase with c = 27 Å. Geol Soc Am, Annual Meeting, Denver, Abstracts: 937–938

  • Libowitzky E, Beran A (2006) The structure of hydrous species in nominally anhydrous minerals: information from polarized IR spectroscopy. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals, Rev Miner Geochem 62:29–52

  • Lin Y, Kimura M, Wang D (2003) Fassaites in compact type A Ca-Al-rich inclusions in the Ningqiang carbonaceous chondrite: evidence for partial melting in the nebula. Meteor Planet Sci 38:407–417

    Article  Google Scholar 

  • Ma C, Rossman G (2009a) Davisite, CaScAlSiO6, a new pyroxene from the Allende meteorite. Am Miner 94:845–848

    Article  Google Scholar 

  • Ma C, Rossman G (2009b) Grossmanite, CaTi3+AlSiO6, a new pyroxene from the Allende meteorite. Am Miner 94:1491–1494

    Article  Google Scholar 

  • McDonough WF (2003) Compositional model for the earth’s core. In: Carlson RW, Holland HD, Turekian KK (eds) The Mantle and Core: treatise on Geochemistry, Vol 2. Elsevier-Pergamon, Oxford, pp 547–568

    Chapter  Google Scholar 

  • Nazzareni S, Molin G, Skogby H, Dal Negro A (2004) Crystal chemistry of Ti3+–Ti4+-bearing synthetic diopsides. Eur J Miner 16:443–449

    Article  Google Scholar 

  • Ohashi H (2003) X-ray study on Si–O bonding Tokyo. Maruzen Publishing Service Center, ISBN 4-89630-094-7

  • Ohashi H, Ii N (1978) Structure of calcium scandium aluminum silicate (CaScAlSiO6)-pyroxene. J Jpn Ass Miner Petrol Econ Geol 73:267–273

    Article  Google Scholar 

  • Ohashi H, Sekita M (1983) Raman spectroscopy study of clinopyroxene in the join the CaScAlSiO6–CaTiAlSiO6. J Jpn Ass Miner Petrol Econ Geol 78:239–245

    Article  Google Scholar 

  • Ohashi H, Fujita T, Ii N (1979) Structure of Ca1.00Sc0.84Ti0.27Al1.16Si0.73O6 pyroxene. J Jpn Ass Miner Petrol Econ Geol 74:280–286

    Article  Google Scholar 

  • Ohashi H, Osawa T, Sato A (1994) NaScSi2O6. Acta Cryst C50:832–840

    Google Scholar 

  • Okamura FP, Ghose S, Ohashi A (1974) Structure and crystal chemistry of calcium Tschermak’s pyroxene, CaAlAlSiO6. Am Miner 59:549–557

    Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray micro-analysis. I. application to the analysis of homogeneous samples. La Recherche Aerosp 3:13–36

    Google Scholar 

  • Redhammer GJ, Roth G (2004) Structural variation and crystal chemistry of LiMe3+Si2O6 clinopyroxenes Me3+ = Al, Ga, Cr, V, Fe, Sc and In. Zeitschrift für Kristallographie (Cryst Mater) 219:278–294

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation; a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Sekita M, Ohashi H, Terada S (1988) Raman spectroscopic study of clinopyroxenes in the system CaScAlSiO6–CaAl2SiO6. Phys Chem Miner 15:319–322

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Google Scholar 

  • Sheldrick GM (1996) SADABS. Program for empirical absorption correction of area detector data. Institut für Anorganische Chemie, University of Göttingen, Germany

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A A64:112–122

    Article  Google Scholar 

  • Simon SB, Davis AM, Grossman L (1996) A unique ultrarefractory inclusion from the Murchison meteorite. Meteor Planet Sci 31:106–115

    Article  Google Scholar 

  • Takéuchi Y, Kudoh Y, Ito J (1984a) New series of superstructures based on a clinopyroxene.I. The structure of the enstatite-IV. series, [Mg(x.12)/3Sc4][Li4/3Si(x.4)/3]Ox, with x = 100, 112, or 124. Acta Cryst B40:115–125

    Google Scholar 

  • Takéuchi Y, Kudoh Y, Ito J (1984b) New series of superstructures based on a clinopyroxene. II. The structure of the Sc series of enstatite-IV, [Mg~(x−7.5)/3Sc~3][Mg2/3Si(x−4)/3]Ox, with x = 100, 112 or 124. Acta Cryst B40:126–132

    Google Scholar 

  • Takéuchi Y, Kudoh Y, Ito J (1984c) New series of superstructures based on a clinopyroxene III. Higher order superstructures. Acta Cryst B40:257–262

    Google Scholar 

  • Yang H, Downs RT (2007) Synthesis and crystal structure of Li0.52Mg0.96Sc0.52Si2O6 orthopyroxene. Am Miner 92:225–228

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Editor Milan Rieder and two anonymous referees for constructive comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nazzareni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazzareni, S., Skogby, H. & Hålenius, U. Crystal chemistry of Sc-bearing synthetic diopsides. Phys Chem Minerals 40, 789–798 (2013). https://doi.org/10.1007/s00269-013-0613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0613-5

Keywords

Navigation