Physics and Chemistry of Minerals

, Volume 40, Issue 4, pp 331–340 | Cite as

A comparative study of the thermal behaviour of length-fast chalcedony, length-slow chalcedony (quartzine) and moganite

  • Patrick Schmidt
  • Aneta Slodczyk
  • Vanessa Léa
  • Anne Davidson
  • Simon Puaud
  • Philippe Sciau
Original Paper

Abstract

The thermal behaviour of silica rocks upon heat treatment is dependent on the constituent minerals and petrographic texture types. These constituents can be shown to be mainly quartz in the form of two types of chalcedony (Length-fast (LF) chalcedony and Length-slow (LS) chalcedony, the latter also being termed quartzine) and moganite. Even though the thermal behaviour of LF-chalcedony is well understood, major uncertainties persist concerning the high-temperature behaviour of LS-chalcedony and moganite. We present here a comparative study of these three constituents of common silica rocks. Our results show that the chemical reaction is the same in all three, Si–OH + HO–Si → Si–O–Si + H2O, but that the reaction kinetics and activation temperatures are very different. LS-chalcedony begins to react from 200 °C upwards, that is at temperatures 50 °C below the ones observed in LF-chalcedony, and shows the fastest reaction kinetics of this ‘water’ loss. Chemically bound water (SiOH) in moganite is more stable at high temperatures and no specific activation temperature is necessary for triggering the temperature-induced ‘water’ loss. Moganite is also found to act as a stabilizer in silica rocks preventing them from temperature-induced fracturing. These findings have implications for the study of potential heat treatment temperatures of silica rocks (in industry and heritage studies), but they also shed light on the different structures of SiO2 minerals and the role of OH impurities therein.

Keywords

Silica rocks Moganite Chalcedony Quartzine Silanole (SiOH) Heat treatment 

References

  1. Cady SL, Wenk HR, Sintubin M (1998) Microfibrous quartz varieties: characterization by quantitative X-ray texture analysis and transmission electron microscopy. Contrib Miner Petrol 130(3):320–335CrossRefGoogle Scholar
  2. Flörke OW (1967) Die Modifikationen von SiO2. Fortschr Mineral 44(2):181–230Google Scholar
  3. Flörke OW, Jones JB, Schmincke HU (1976) A new microcrystalline silica from Gran Canaria. Z Kristallogr 143:156–165Google Scholar
  4. Flörke OW, Köhler-Herbertz B, Langer K, Tönges I (1982) Water in microcrystalline quartz of volcanic origin: agates. Contrib Miner Petrol 80(4):324–333CrossRefGoogle Scholar
  5. Flörke OW, Flörke U, Giese U (1984) Moganite, a new microcrystalline silica-mineral. Neues Jahrbuch für Mineralogie Abhandlungen 149(3):325–336Google Scholar
  6. Flörke OW, Graetsch H, Martin B, Röller K, Wirth R (1991) Nomenclature of micro- and non-crystalline silica minerals, based on structure and microstructure. Neues Jahrbuch für Mineralogie Abhandlungen 163:19–42Google Scholar
  7. Folk RL, Pittman JS (1971) Length-slow chalcedony: a new testament for vanished evaporites. J Sediment Res 41(4):1045–1058Google Scholar
  8. Fukuda J, Nakashima S (2008) Water at high temperatures in a microcrystalline silica (chalcedony) by in situ infrared specroscopy: physicochemical states and dehydration behavior. J Mineral Petrol Sci 103:112–115CrossRefGoogle Scholar
  9. Graetsch H, Flörke OW, Miehe G (1985) The nature of water in chalcedony and opal-C from brazilian agate geodes. Phys Chem Miner 12(5):300–306CrossRefGoogle Scholar
  10. Graetsch H, Flörke OW, Miehe G (1987) Structural defects in microcrystalline silica. Phys Chem Miner 14(3):249–257CrossRefGoogle Scholar
  11. Heaney PJ, Davis AM (1995) Observation and origin of self-organized textures in agates. Science 269(5230):1562–1565CrossRefGoogle Scholar
  12. Heaney PJ, Post JE (1992) The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties. Science 255(5043):441–443. doi:10.1126/science.255.5043.441 CrossRefGoogle Scholar
  13. Heaney PJ, Post JE (2001) Evidence for an I2/a to Imab phase transition in the silica polymorph moganite at ~570 K. Am Mineral 86(11–12):1358–1366Google Scholar
  14. Heaney PJ, Veblen DR, Post JE (1994) Structural disparities between chalcedony and macrocrystalline quartz. Am Mineral 79:452–460Google Scholar
  15. Lacroix A (1893–1901) Minéralogie de la France et de ses colonies: description physique et chimique des minéraux, étude des conditions géologiques de leurs gisements, vol 1–3. Baudry et Cie, ParisGoogle Scholar
  16. Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl Instrum Methods Phys Res Sect B 268(3–4):334–340CrossRefGoogle Scholar
  17. Michel-Levy A, Munier-Chalmas CPE (1892) Mémoire sur les diverses formes affectées par le réseau élémentaire du quartz. Bulletin de la société minéralogique de France 7:159–195Google Scholar
  18. Miehe G, Graetsch H (1992) Crystal structure of moganite: a new structure type of silica. Eur J Mineral 4:693–706Google Scholar
  19. Miehe G, Graetsch H, Flörke OW (1984) Crystal structure and growth fabric of length-fast chalcedony. Phys Chem Miner 10(5):197–199CrossRefGoogle Scholar
  20. Miehe G, Flörke OW, Graetsch H (1986) Moganit: Strukturvorschlag für ein neues mikrokristallines SiO2-Mineral. Fortschritte der Mineralogie 64 (Beiheft 1):117Google Scholar
  21. Rios S, Salje EKH, Redfern SAT (2001) Nanoquartz vs. macroquartz: a study of the a—ß phase transition. Eur Phys J B 20:75–83CrossRefGoogle Scholar
  22. Schmidt P (2011) Traitement thermique des silicifications sédimentaires, un nouveau modèle des transformations cristallographiques et structurales de la calcédoine induites par la chauffe. Unpublished doctoral thesis, Muséum national d’histoire naturelle, ParisGoogle Scholar
  23. Schmidt P, Fröhlich F (2011) Temperature dependent crystallographic transformations in chalcedony, SiO2, assessed in mid infrared spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 78(5):1476–1481CrossRefGoogle Scholar
  24. Schmidt P, Badou A, Fröhlich F (2011) Detailed FT near-infrared study of the behaviour of water and hydroxyl in sedimentary length-fast chalcedony, SiO2, upon heat treatment. Spectrochim Acta Part A Mol Biomol Spectrosc 81(1):552–559CrossRefGoogle Scholar
  25. Schmidt P, Masse S, Laurent G, Slodczyk A, Le Bourhis E, Perrenoud C, Livage J, Fröhlich F (2012) Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. J Archaeol Sci 39(1):135–144CrossRefGoogle Scholar
  26. Schmidt P, Léa V, Sciau P, Fröhlich F (in press) Detecting and quantifying heat treatment of flint and other silica rocks: A new non-destructive method applied to heat-treated flint from the Neolithic Chassey culture, southern France. Archaeometry (accepted). doi: 10.1111/j.1475-4754.2012.00712.x
  27. Scholze H (1960) Über die quantitative UR-spektroskopische Wasserbestimmung in Silikaten. Fortschr Mineral 38(2):122–123Google Scholar
  28. Will G, Bellotto M, Parrish W, Hart M (1988) Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. J Appl Crystallogr 21(2):182–191. doi:10.1107/s0021889887011567 CrossRefGoogle Scholar
  29. Yamagishi H, Nakashima S, Ito Y (1997) High temperature infrared spectra of hydrous microcrystalline quartz. Phys Chem Miner 24(1):66–74. doi:10.1007/s002690050018 CrossRefGoogle Scholar
  30. Zhang M, Moxon T (2012) In situ infrared spectroscopic studies of OH, H2O and CO2 in moganite at high temperatures. Eur J Mineral 24(1):123–131CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patrick Schmidt
    • 1
  • Aneta Slodczyk
    • 2
  • Vanessa Léa
    • 3
  • Anne Davidson
    • 4
  • Simon Puaud
    • 5
  • Philippe Sciau
    • 6
  1. 1.Muséum national d’histoire naturelle, Dept. de Préhistoire UMR 7194Centre de spectroscopie infrarougeParis Cedex 05France
  2. 2.Laboratoire de dynamique, interactions et réactivité (LADIR), UMR 7075, CNRSUniversité Pierre et Marie Curie (UPMC)-Paris 6Paris Cedex 05France
  3. 3.TRACES, UMR 5608, Université Toulouse II le MirailToulouse CEDEX 9France
  4. 4.Laboratoire de Réactivité de Surface (LRS), UMR 7197, CNRSUniversité Pierre et Marie Curie (UPMC)-Paris 6Ivry sur SeineFrance
  5. 5.Muséum national d’histoire naturelle, Dpt. de Préhistoire UMR 7194 CNRSParisFrance
  6. 6.CEMES, CNRS UPR 8011, Université de ToulouseToulouseFrance

Personalised recommendations