Skip to main content
Log in

Thermodynamic properties of CoCr2O4: specific heat and magnetic entropy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We present the temperature dependence of the specific heat of CoCr2O4 between 2.08 K and 306 K in zero magnetic field. The lattice component can be described by the Komada–Westrum model with a characteristic temperature ΘKW = 541 K. The entropy of the magnetic component amounts to 33.51 J mol−1 K−1 at T = 298.15 K, in good agreement with the magnetic entropy of Co2+ and Cr3+ ions with completely quenched orbital moments. We compare our results with data available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bunting JG, Ashworth T, Steeple H (1969) The specific heat of Apiezon N grease. Cryog 9:385

    Article  Google Scholar 

  • Dachs E, Geiger CA, von Seckendorff V, Grodzicki M (2007) A low-temperature calorimetric study of synthetic (forsterite + fayalite) (Mg2SiO4 + Fe2SiO4) solid solutions: an analysis of vibrational, magnetic, and electronic contributions to the molar heat capacity and entropy of mixing. J Chem Thermodynamics 39:906–933

    Article  Google Scholar 

  • Doraiswami MS (1947) Elastic constants of magnetite, pyrite and chromite. Proc Indian Acad Sci A 25:413–416

    Google Scholar 

  • Inaba H, Nakashima S, Naito K (1982) Heat capacity of iron-chromium spinels Fe3−xCrxO4. J Solid State Chem 41:213–220

    Article  Google Scholar 

  • Kanomata T, Tsuda T, Yasui H, Kaneko T (1988) Effect of pressure on the Curie temperature of CoCr2O4. Phys Lett A 134:196–198

    Article  Google Scholar 

  • Klemme S, van Miltenburg JC (2002) Thermodynamic properties of nickel chromite (NiCr2O4). Phys Chem Minerals 29:663–667

    Article  Google Scholar 

  • Komada N, Westrum EF Jr (1997) Modeling lattice heat-capacity contributions by a single-parametric phonon dispersion approach. J Chem Thermodynamics 29:311–336

    Article  Google Scholar 

  • Kraus W, Nolze G (1996) POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Cryst 29:301–303

    Article  Google Scholar 

  • Lashley JC, Stevens R, Crawford MK, Boerio-Goates J, Woodfield BF, Qiu Y, Lynn JW, Goddard PA, Fisher RA (2008) Specific heat and magnetic susceptibility of the spinels GeNi2O4 and GeCo2O4. Phys Rev B 78:104406

    Article  Google Scholar 

  • Lawes G, Melot B, Page K, Ederer C, Hayward MA, Proffen Th, Seshadri R (2006) Dielectric anomalies and spiral magnetic order in CoCr2O4. Phys Rev B 74:024413

    Article  Google Scholar 

  • Mansour B, Baffier N, Huber M, Chimie Minérale (1973) Distorsion de type Jahn-Teller et repartition des cations dans les oxydes spinelles CoMnxCr2-xO4 (0 ≤ x ≤ 2). Etude par diffraction des rayons X et des neutrons. C R Seances Acad Sci C 277:867–869

    Google Scholar 

  • Melot BC, Drewes JE, Seshadri R, Stoudenmire EM, Ramirez AP (2009) Magnetic phase evolution in the spinel compounds Zn1−xCoxCr2O4. J Phys: Condens Matter 21:216007

    Article  Google Scholar 

  • Ottonello G (1986) Energetics of multiple oxides with spinel structure. Phys Chem Minerals 13:79–90

    Article  Google Scholar 

  • Plumier R (1968) Reinvestigation of magnetic structures of CoCr2O4 and MnCr2O4 obtained by neutron diffraction. J Appl Phys 39:635

    Article  Google Scholar 

  • Pronin AV, Uhlarz M, Beyer R, Fischer T, Wosnitza J, Gorshunov BP, Komandin GA, Prokhorov AS, Dressel M, Bush AA, Torgashev VI (2012) B-T phase diagram of CoCr2O4 in magnetic fields up to 14T. Phys Rev B 85:012101

    Article  Google Scholar 

  • Schink HJ, Löhneysen Hv (1981) Specific heat of Apiezon N grease at very low temperatures. Cryog 21:591–592

    Article  Google Scholar 

  • Swenson CA (1999) Specific Heat (C p ) of Apiezon N grease (1 to 108 K) and calorimetry: C p of copper below 30 K. Rev Sci Instrum 70:2728–2731

    Article  Google Scholar 

  • Yamasaki Y, Miyasaka S, Kaneko Y, He JP, Arima T, Tokura Y (2006) Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys Rev Lett 96:207204

    Article  Google Scholar 

  • Ziemniak SE, Anovitz LM, Castelli RA, Porter WD (2007) Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4. J Chem Thermodynamics 39:1474–1492

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work has been supported by EuroMagNET II under EU contract no. 228043, and by RFBR via grants nos. 12-02-00151-a and 12-02-00960-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Uhlarz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlarz, M., Pronin, A.V., Wosnitza, J. et al. Thermodynamic properties of CoCr2O4: specific heat and magnetic entropy. Phys Chem Minerals 40, 203–206 (2013). https://doi.org/10.1007/s00269-012-0561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0561-5

Keywords

Navigation