Skip to main content
Log in

Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Polarized Fourier-transform infrared and Raman spectra were acquired on an elbaite sample previously characterized by electron- and ion microprobe analysis, X-ray diffraction and structure refinement. Spectra from the two vibrational spectroscopy techniques reveal a close similarity in the OH-stretching region, with three main absorption bands strongly polarized in the c-axis direction. By means of bond-valence theory arguments, the observed OH bands are interpreted and assigned to specific local cation arrangements around the O1 (≡W) and O3 (≡V) anion sites. In combination with the relatively simple composition of the studied sample, bond-valence constraints are used to identify stable anion-cation arrangements, which permit the occurrence of short-range ordering to be assessed. Evidence for nearly complete short-range order at the O1 site, with the stable arrangements Y(LiAlAl)0.6W(OH)0.6 and Y(LiLiAl)0.4W(F)0.4, are presented. These two local arrangements can be further expanded to obtain the larger ordered clusters [W(OH)–Y(LiAl2)–V(OH)3Z(Al)6]0.6 and [W(F)–Y(Li2Al)–V(OH)3Z(Al)6]0.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrosì G, Bosi F, Lucchesi S, Melchiorre G, Scandale E (2006) Mn-tourmaline crystals from island of Elba (Italy): growth history and growth marks. Am Mineral 91:944–952

    Article  Google Scholar 

  • Bosi F (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineral Mag 74:1037–1044

    Article  Google Scholar 

  • Bosi F (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. Can Mineral 49:17–27

    Article  Google Scholar 

  • Bosi F, Lucchesi S (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. Am Mineral 92:1054–1063

    Article  Google Scholar 

  • Bosi F, Agrosì G, Lucchesi S, Melchiorre G, Scandale E (2005a) Mn-tourmaline from island of Elba (Italy): crystal chemistry. Am Mineral 90:1661–1668

    Article  Google Scholar 

  • Bosi F, Andreozzi GB, Federico M, Graziani G, Lucchesi S (2005b) Crystal chemistry of the elbaite-schorl series. Am Mineral 90:1784–1792

    Article  Google Scholar 

  • Bosi F, Balić-Žunić T, Surour AA (2010) Crystal structure analysis of four tourmalines from the Cleopatra’s Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in the tourmaline group. Am Mineral 95:510–518

    Article  Google Scholar 

  • Bosi F, Skogby H, Agrosì G, Scandale E (2012) Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Piero in Campo, island of Elba, Italy. Am Mineral 97:989–994

    Article  Google Scholar 

  • Brown ID (1976) On the Geometry of O–H···O Hydrogen Bonds. Acta Cryst A32:24–31

    Google Scholar 

  • Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst B41:244–247

    Google Scholar 

  • Castañeda C, Oliveira EF, Gomes N, Soares ACP (2000) Infrared study of OH in tourmaline from the elbaite-schorl series. Am Mineral 85:1503–1507

    Google Scholar 

  • Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Redox processes of iron in the tourmaline structure: example of the high-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86:239–256

    Article  Google Scholar 

  • Foit FF Jr (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. Am Mineral 74:422–431

    Google Scholar 

  • Gatta GD, Danisi RM, Adamo I, Meven M, Diella V (2012) A single-crystal neutron and X-ray diffraction study of elbaite. Phys Chem Miner 39:577–588

    Article  Google Scholar 

  • Gebert W, Zemann J (1965) Messung des Ultrarot-Pleochroismus von Mineralen II. Der Pleochroismus der OH-Streckfrequenz in Turmalin. Neues Jahrb Mineral Monatsh 8:232–235

    Google Scholar 

  • Gonzalez-Carreño T, Fernandez M, Sanz J (1988) Infrared and electron microprobe analysis of tourmalines. Phy Chem Miner 15:452–460

    Article  Google Scholar 

  • Grice JD, Ercit TS (1993) Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. Neues Jahrb Mineral Abh 165:245–266

    Google Scholar 

  • Hawthorne FC (1996) Structural mechanisms for light-element variations in tourmaline. Can Mineral 34:123–132

    Google Scholar 

  • Hawthorne FC (2002) Bond-valence constraints on the chemical composition of tourmaline. Can Mineral 40:789–797

    Article  Google Scholar 

  • Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11:201–215

    Google Scholar 

  • Hawthorne FC, Ventura Della (2007) Short-range order in amphiboles. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Reviews in Mineralogy, vol 67. Mineralogical Society of America, Chantilly, Virginia, pp 173–222

    Google Scholar 

  • Hawthorne FC, Della Ventura G, Oberti R, Robert J-L, Iezzi G (2005) Short-range order in minerals: amphiboles. Can Mineral 43:1895–1920

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (2011) The incorporation of fluorine in tourmaline: internal crystallographic controls or external environmental influences? Can Mineral 49:41–56

    Article  Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Hoang LH, Hien NTM, Chen XB, Minh NV, Yang I-S (2011) Raman spectroscopic study of various types of tourmalines. J Raman Spectrosc 42:1442–1446

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H···hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Article  Google Scholar 

  • Lussier AJ, Aguiar PM, Michaelis VK, Kroeker S, Herwig S, Abdu Y, Hawthorne FC (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer spectroscopy. Mineral Mag 72:747–761

    Article  Google Scholar 

  • Lussier AJ, Hawthorne FC, Aguiar PM, Michaelis VK, Kroeker S (2011a) Elbaite-liddicoatite from Black Rapids glacier, Alaska. Period Mineral 80:57–73

    Google Scholar 

  • Lussier AJ, Abdu Y, Hawthorne FC, Michaelis VK, Aguiar PM, Kroeker S (2011b) Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. Can Mineral 49:63–88

    Article  Google Scholar 

  • Martìnez-Alonso S, Rustad JR, Goetz AFH (2002) Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: main physical factors governing the OH vibrations. Am Mineral 87:1224–1234

    Google Scholar 

  • Mashkovtsev RI, Lebedev AS (1991) IR-spectroscopy of OH-groups in tourmaline. Soviet Geol Geophys 32:80–84

    Google Scholar 

  • Novák M, Povondra P, Selway JB (2004) Schorl-oxy-schorl to dravite-oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. Eur J Mineral 16:323–333

    Article  Google Scholar 

  • Novák M, Škoda P, Filip J, Macek I, Vaculovič T (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic; electron microprobe, Mössbauer and LA-ICP-MS study. Can Mineral 49:359–380

    Article  Google Scholar 

  • Peng M, Mao H-K, Chen L-C, Chao ECT (1988) The polarized Raman spectra of tourmaline. Annual Report of the Director of the Geophysical Laboratory, Carnegie Inst Washington, 1988–1989, Washington, pp 99–105

  • Reddy BJ, Frost RL, Martens WN, Wain DL, Kloprogge JT (2007) Spectroscopic characterization of Mn-rich tourmalines. Vibr Spectrosc 44:42–49

    Article  Google Scholar 

  • Robert JL, Gourdant JP, Linnen RL, Rouer O, Benoist P (1997) Crystal chemical relationships between OH, F and Na in tourmalines. In: Tourmaline 1997, International Symposium on Tourmaline, (Nove Mesto na Morave), Abstr p 84

  • Tippe A, Hamilton WC (1971) A neutron-diffraction study of the ferric tourmaline, buergerite. Am Mineral 56:101–113

    Google Scholar 

  • van Hinsberg VJ, Schumacher JC (2009) The geothermobarometric potential of tourmaline, based on experimental and natural data. Am Mineral 94:761–770

    Article  Google Scholar 

  • van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16

    Article  Google Scholar 

Download references

Acknowledgments

We thank Frank Hawthorne and Darell Henry for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Skogby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skogby, H., Bosi, F. & Lazor, P. Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Phys Chem Minerals 39, 811–816 (2012). https://doi.org/10.1007/s00269-012-0536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0536-6

Keywords

Navigation