Skip to main content
Log in

Electrical conductivity of H-bearing orthopyroxene single crystals measured with impedance spectroscopy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In this study, the electrical conductivity of synthetic and natural orthopyroxene single crystals containing various amounts of hydrogen and cation impurities (i.e., Al, Fe) was investigated using impedance spectroscopy. A new cell was developed to measure conductivities of submillimeter-sized oriented single crystals with impedances up to 1010 Ohm. In contrast to previous studies on olivine and orthopyroxene, results from this study do not show a simple correlation of the concentration of protons and the electrical conductivity. Instead, the electrical conductivity appears to be a complex function of iron content, hydrogen content, crystal orientation and concentration of other impurity cations and shows similar activation energies to hydrogen diffusion. Model calculations considering proton conduction rather exclude than suggest orthopyroxene as responsible phase for high-conductivity regions in the Earth’s upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Dai L, Karato S (2009a) Electrical conductivity of orthopyroxene: implications for the water content of the asthenosphere. Proc Jpn Acad Ser B 85:466–475

    Article  Google Scholar 

  • Dai L, Karato S (2009b) Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet Sci Lett 287:277–283

    Article  Google Scholar 

  • Duba A, Heard C, Schock RN (1976) Electrical conductivity of orthopyroxene to 1,400 °C and the resulting selenotherm. Proc 7th Lunar Sci Conf, 3173–3181

  • Duba A, Dennison M, Irving AJ, Thornber CR, Huebner JS (1979) Electrical conductivity of aluminous orthopyroxene. Abstracts of the tenth lunar and planetary science conference, Lunar and Planetary Institute, Houston, Texas. pp 318–319

  • Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–1365

    Article  Google Scholar 

  • Glover PWJ (1996) Graphite and electrical conductivity in the lower continental crust: a review. Phys Chem Earth 21:279–287

    Article  Google Scholar 

  • Grant K, Ingrin J, Lorand JP, Dumas P (2007) Water partitioning between mantle minerals from peridotite xenoliths. Contrib Mineral Petrol 154:15–34

    Article  Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2003) Chemistry of grain boundaries in mantle rocks. Am Mineral 88:1015–1019

    Google Scholar 

  • Hirth G, Evans RL, Chave AD (2000) Comparison of continental and oceanic mantle electrical conductivity: is the Archean lithosphere dry? Geochem Geophys Geosyst 1:1030. doi:10.1029/2000GC000048

  • Huebner JS, Voigt DE (1988) Electrical conductivity of diopside: evidence for oxygen vacancies. Am Mineral 73:1235–1254

    Google Scholar 

  • Ichiki M, Uyeshima M, Utada H, Guoze Z, Ji T, Mingzhi M (2001) Upper mantle conductivity structure of the back-arc region beneath northeastern China. Geophys Res Lett 28:3773–3776

    Article  Google Scholar 

  • Ingrin J, Hercule S, Charton T (1995) Diffusion of hydrogen in diopside: results of dehydration experiments. J Geophys Res 100:15489–15499

    Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273

    Article  Google Scholar 

  • Libowitzky E, Rossmann GR (1997) An IR absorption calibration for water in minerals. Am Mineral 82:1111–1115

    Google Scholar 

  • Lizzaralde D, Chave A, Hirth G, Schultz A (1995) Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J Geophys Res 100:17837–17854

    Google Scholar 

  • Mackwell SJ, Kohlstedt DL (1990) Diffusion of hydrogen in olivine: implications for water in the mantle. J Geophys Res 95:5079–5088

    Article  Google Scholar 

  • Manthilake MAGM, Matsusaki T, Yoshino T, Yamashita S, Ito E, Katsura T (2009) Electrical conductivity of wadsleyite as a function of temperature and water content. Phys Earth Planet Inter 174:10–18

    Article  Google Scholar 

  • Mareschal M, Kellet RL, Kurtz RD, Ludden JN, Ji S, Bailey RC (1995) Archaean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature 375:134–137

    Article  Google Scholar 

  • Mierdel K, Keppler H, Langenhorst F (2007) Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science 315:364–367

    Article  Google Scholar 

  • Özkan O, Moulson A (1970) The electrical conductivity of single crystal and polycrystal aluminum oxide. J Phys D Appl Phys 3:983–987

    Article  Google Scholar 

  • Peslier AH (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geotherm Res 197:239–258

    Article  Google Scholar 

  • Simpson F (2002) Intensity and direction of lattice-preferred orientation of olivine: are electrical and seismic anisotropies of the Australian mantle reconcilable? Earth Planet. Sci Lett 203:535–547

    Google Scholar 

  • Simpson F, Tommasi A (2005) Hydrogen diffusivity and electrical conductivity of a peridotite mantle. Geophys J Int 160:1092–1102

    Article  Google Scholar 

  • Sommer H, Regenauer-Lieb K, Gasharova B, Siret D (2008) Grain boundaries: a possible water reservoir in the Earth’s mantle? Mineral Petrol 94:1–8

    Article  Google Scholar 

  • Stalder R (2002) Synthesis of enstatite single crystals at high pressure. Eur J Mineral 14:637–640

    Article  Google Scholar 

  • Stalder R (2004) Influence of Fe, Cr and Al on hydrogen incorporation in orthopyroxene. Eur J Mineral 16:703–711

    Article  Google Scholar 

  • Stalder R, Behrens H (2006) D/H exchange in pure and Cr-doped enstatite: implications for hydrogen diffusivity. Phys Chem Miner 33:601–611

    Article  Google Scholar 

  • Stalder R, Skogby H (2003) Hydrogen diffusion in synthetic and natural orthopyroxene. Phys Chem Miner 30:12–19

    Article  Google Scholar 

  • Stalder R, Skogby H (2007) Dehydration mechanisms in synthetic Fe-bearing enstatite. Eur J Mineral 19:201–216

    Article  Google Scholar 

  • Stalder R, Purwin H, Skogby H (2007) Influence of Fe on hydrogen diffusivity in orthopyroxene. Eur J Mineral 19:899–903

    Article  Google Scholar 

  • Stocker RL (1978) Variation of electrical conductivity in enstatite with oxygen partial pressure: Comparison of observed and predicted behavior. Phys Earth Planet Inter 17:34–40

    Article  Google Scholar 

  • ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res 109:B06203

    Article  Google Scholar 

  • ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in olivine rocks based on electrical conductivity measurements. J Geophys Res 110:B12201

    Article  Google Scholar 

  • Vinnek LP, Makeyeva LI, Milev A, Usenko AY (1992) Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophys J Int 111:433–447

    Article  Google Scholar 

  • Voigt R, Seifert KF, Will G (1979) Die elektrische Leitfähigkeit von Pyroxenen der Reihe MgSiO3-FeSiO3 bei 10 und 20 kbar unter definierten thermodynamischen Bedingungen. N Jb Miner Mh 7:296–308

    Google Scholar 

  • Wang Z, Ji S, Dresen G (1999) Hydrogen-enhanced electrical conductivity of diopside crystals. Geophys Res Lett 26:799–802

    Article  Google Scholar 

  • Wang D, Mookherjee M, Xu Y, Karato S (2006) The effect of water on the electrical conductivity of olivine. Nature 443:977–980

    Article  Google Scholar 

  • Watson HC, Roberts JJ, Tyburczy JA (2010) Effect of conductive impurities on electrical conductivity in polycrystalline olivine. Geophys Res Lett 37:L02302

    Article  Google Scholar 

  • Will G, Cemic L, Hinze E, Seifert K-F, Voigt R (1979) Electrical conductivity measurements on olivines and pyroxenes under defined thermodynamic activities as a function of temperature and pressure. Phys Chem Miner 4:189–197

    Article  Google Scholar 

  • Xu Y, Shankland TJ (1999) Electrical conductivity of orthopyroxene and its high pressure phases. Geophys Res Lett 26:2645–2648

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976

    Article  Google Scholar 

  • Yoshino T, Manthilake G, Matsuzaki T, Katsura T (2008) Dry manle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451:326–329

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288:291–300

    Article  Google Scholar 

Download references

Acknowledgments

The project was funded by the German Science Foundation (DFG grants STA645/4-1,2 und BE1720/18-1,2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Stalder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlechter, E., Stalder, R. & Behrens, H. Electrical conductivity of H-bearing orthopyroxene single crystals measured with impedance spectroscopy. Phys Chem Minerals 39, 531–541 (2012). https://doi.org/10.1007/s00269-012-0509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0509-9

Keywords

Navigation