Skip to main content
Log in

A variable-temperature neutron diffraction study of ussingite; a strong asymmetric hydrogen bond in an aluminosilicate framework

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A powder neutron diffraction study of ussingite, Na2AlSi3O8(OH), over the temperature range 4–850 K has been undertaken. The strong hydrogen bond that exists in this mineral has been accurately determined with the O–H distance at 1.070(8) Å and an O(donor)–O(acceptor) separation of 2.481(5) Å at 4 K, The distribution of hydrogen along the O–O direction remains asymmetric between 4 and 850 K with the H atom being fully ordered at a single site, rather than partially disordered over two sites of a double-potential well, as in serandite. A gradual increase in the bonded O–H distance at higher temperatures is observed, indicative of a broadening of the potential well in which the hydrogen atom is sited. Below 50 K, the material shows negative thermal expansion, likely to be associated with reduced bending motion of the O–H bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armstrong JA, Friis H, Lieb A, Finch AA, Weller MT (2010) Combined single-crystal X-ray and neutron powder diffraction structure analysis exemplified through full structure determinations of framework and layer beryllate minerals. Am Mineral 95:519–526

    Article  Google Scholar 

  • Attfield MP, Sleight AW (1998) Strong negative thermal expansion in siliceous faujasite. Chem Commun 5:601–602

    Google Scholar 

  • Barrie PJ, Gladden LF, Klinowski J (1991) Neutron-diffraction studies of realuminated zeolite-y. J Chem Soc Chem Commun 8:592–594

    Google Scholar 

  • Bell DR, Rossman GR (1992) Water in earths mantle—the role of nominally anhydrous minerals. Science 255:1391–1397

    Article  Google Scholar 

  • Berry AJ, James M (2002) Refinement of hydrogen positions in natural chondrodite by powder neutron diffraction: implications for the stability of humite minerals. Mineral Mag 66:441–449

    Article  Google Scholar 

  • Bøggild O (1914) Ussingit, ein neues Mineral von Kangerdluarsuk. Z Kristallogr 54:120–126

    Google Scholar 

  • Burns PC, Hawthorne FC (1994) Structure and hydrogen-bonding in preobrazhenskite, a complex heteropolyhedral borate. Can Mineral 32:387–396

    Google Scholar 

  • Busing W, Levy H (1964) The effect of thermal motion on the estimation of bond lengths from diffraction measurements. Acta Crystallogr 17:142–146

    Article  Google Scholar 

  • Engell J, Hansen J, Jensen M, Kunzendorf H, Lovborg L (1971) Beryllium mineralization in the Ilímaussaq intrusion, South Greenland, with description of a field beryllometer and chemical methods. Rapp Grønl Geol Unders 33:1–40

    Google Scholar 

  • Farver JR, Yund RA (1990) The effect of hydrogen, oxygen, and water fugacity on oxygen diffusion in alkali feldspar. Geochim Cosmochim Acta 54:2953–2964

    Article  Google Scholar 

  • Hewat AW, Heathman S (1984) D2B, a new high-resolution neutron powder diffractometer. Acta Crystallogr Sect A 40:C364–C364

    Google Scholar 

  • Ilyukin V, Semenov Y (1959) New data on ussingite. Dokl Earth Sci 129:1176–1178

    Google Scholar 

  • Jacobsen SD, Smyth JR, Swope RJ, Sheldon RI (2000) Two proton positions in the very strong hydrogen bond of serandite, NaMn2·Si3O8(OH). Am Mineral 85:745–752

    Google Scholar 

  • Johnson EA, Rossman GR (2004) An infrared and H-1 MAS NMR investigation of strong hydrogen bonding in ussingite, Na2AlSi3O8(OH). Phys Chem Miner 31:115–121

    Article  Google Scholar 

  • Kotel’nikov AR, Ogorodova LP, Mel’chakova LV, Vigasina MF (2010) Ussingite from the Lovozero Alkaline Massif: calorimetric, thermal, and ir spectroscopic study. Geochem Int 48:183–186

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86-748

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H center dot center dot center dot O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Google Scholar 

  • Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) The widespread occurrence of negative thermal expansion in zeolites. J Mater Chem 11:212–216

    Article  Google Scholar 

  • Mandarino J, Anderson V (1989) Motneregian treasures: the minerals of Mont Saint-Hilaire. Cambridge University Press, Quebec, p 207

    Google Scholar 

  • Miyoshi T, Mashiyama H, Asahi T, Kimura H, Noda Y (2011) Single-crystal neutron structural analyses of potassium dihydrogen phosphate and potassium dideuterium phosphate. J Phys Soc Jpn 80:044709-1–10

    Google Scholar 

  • Novak A (1974): Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Struct Bond 18:177–216

    Google Scholar 

  • Nyfeler D, Armbruster T (1998) Silanol groups in minerals and inorganic compounds. Am Mineral 83:119–125

    Google Scholar 

  • Oglesby JV, Stebbins JF (2000) Si-29 CPMAS NMR investigations of silanol-group minerals and hydrous aluminosilicate glasses. Am Mineral 85:722–731

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Rossi G, Tazzoli V, Ungaretti L (1974) Crystal-structure of ussingite. Am Mineral 59:335–340

    Google Scholar 

  • Tanaka H (2001) Hydrogen bonds between water molecules: thermal expansivity of ice and water. J Mol Liq 90:323–332

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Weller MT, Henry PF, Ting VP, Wilson CC (2009) Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffraction. Chem Commun 21:2973–2989

    Google Scholar 

  • Woodcock DA, Lightfoot P, Villaescusa LA, Diaz-Cabanas MJ, Camblor MA, Engberg D (1999) Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4: A neutron powder diffraction study. Chem Mater 11:2508–2514

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the EPSRC (EP/G068038/1). We also thank ILL for the provision of neutron beam time under proposal 5-21-1025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Weller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, E.R., Weller, M.T. A variable-temperature neutron diffraction study of ussingite; a strong asymmetric hydrogen bond in an aluminosilicate framework. Phys Chem Minerals 39, 471–478 (2012). https://doi.org/10.1007/s00269-012-0501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0501-4

Keywords

Navigation