Physics and Chemistry of Minerals

, Volume 39, Issue 4, pp 305–310 | Cite as

High-P, T phase relations in the NaAlSi2O6 system from first principles computation

  • Kenji KawaiEmail author
  • Taku Tsuchiya
Original Paper


Vibrational density of states of the NaAlSi2O6 jadeite and NaAlSiO4 calcium ferrite (CF)-type, and SiO2 stishovite is calculated as a function of pressure up to 50 GPa using density functional perturbation theory. The calculated frequencies are used to determine the thermal contribution to the Helmholtz free energy within the quasi-harmonic approximation and to derive the equation of state and several thermodynamic properties of interest. A dissociation of jadeite into a mixture of a CF-type phase and stishovite is predicted to occur at 23.4 GPa and 1,800 K with a positive Clapeyron slope of 2.8 MPa/K. Elastic anisotropy for jadeite, the CF-type phase, and stishovite also computed clearly shows that stishovite and the CF-type phase are the most anisotropic and isotropic in these three phases, respectively.


Thermodynamic property Vibrational density of states Phase transition Jadeite CF phase First principles 



We thank Shinji Yamamoto for valuable discussions. This work was completed under the supports in part of KAKENHI (Grant No. 23540560) to TT and of Ehime Univ. Global Centers of Excellence program ``Deep Earth Mineralogy’’ to TT.


  1. Akaogi M, Tanaka A, Kobayashi M, Fukushima N, Suzuki T (2002) High-pressure transformations in NaAlSiO4 and thermodynamic properties of jadeite, nepheline, and calcium ferrite-type phase. Phys Earth Planet Inter 130:49–58CrossRefGoogle Scholar
  2. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  3. Brown JM, Shankland TJ (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys J R Astr Soc 66:579–596CrossRefGoogle Scholar
  4. Ceperley D, Alder B (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRefGoogle Scholar
  5. Deuss A, Woodhouse J (2001) Seismic observations of splitting of the mid-transition zone discontinuity in Earth’s mantle. Science 294:354–357CrossRefGoogle Scholar
  6. Giannozzi P et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Cond Mat 21:395502–395521CrossRefGoogle Scholar
  7. Hamman DR (1996) Generalized gradient theory for silica phase transitions. Phys Rev Lett 76:660–663CrossRefGoogle Scholar
  8. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229CrossRefGoogle Scholar
  9. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871CrossRefGoogle Scholar
  10. Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368CrossRefGoogle Scholar
  11. Karki BB, Stixrude L, Crain J (1997) Ab initio elasticity of three high-pressure polymorphs of silica. Geophys Res Lett 24:3269–3272CrossRefGoogle Scholar
  12. Karki BB, Wentzcovitch RM, de Gironcoli S, Baroni S (2000) High-pressure lattice dynamics and thermoelasticity of MgO. Phys Rev B 61:8793–8800CrossRefGoogle Scholar
  13. Kawai K, Tsuchiya T (2010) Ab initio investigation of high-pressure phase relation and elasticity in the NaAlSi2O6 system. Geophys Res Lett 37:L17302. doi: 10.1029/2010GL044310 CrossRefGoogle Scholar
  14. Kawai K, Tsuchiya T (2012a) Phase stability and elastic properties of the NAL and CF phases in the NaMg2Al5SiO12 system from first principles. Am Min 97:305–314Google Scholar
  15. Kawai K, Tsuchiya T (2012b) First-principles investigations of elasticity and phase transition of grossular garnet. J. Geophys. Res 117:B02202. doi: 10.1029/2011JB008529
  16. Kawai K, Tsuchiya T, Tsuchiya J, Maruyama S (2009) Lost primordial continents. Gondwana Res 16:581–586CrossRefGoogle Scholar
  17. Liu LG (1978) High-pressure phase transformations of albite, jadeite and nepheline. Earth Planet Sci Lett 37:438–444CrossRefGoogle Scholar
  18. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  19. Perdew JP, Zunger A (1981) Self-interaction correction to density functional approximations for many-electron systems. Phys Rev B 23:5048–5079CrossRefGoogle Scholar
  20. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  21. Scholl DW, von Huene R (2007) Crustal recycling at modern subduction zones applied to the past-issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol Soc Am Mem 200:9–32CrossRefGoogle Scholar
  22. Simmons NA, Gurrola H (2000) Multiple seismic discontinuities near the base of the transition zone in the Earth’s mantle. Nature 405:559–562CrossRefGoogle Scholar
  23. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford 312 ppGoogle Scholar
  24. Troullier N, Martins JL (1991) Efficient pseudopotential for planewave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  25. Tsuchiya T (2011) Elasticity of subducted basaltic crust at the lower mantle pressures: Insights on the nature of deep mantle heterogeneity. Phys Earth Planet Inter 188:142–149CrossRefGoogle Scholar
  26. Tsuchiya T, Caracas R, Tsuchiya J (2004) First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophys Res Lett 31:L11610. doi: 10.1029/2004GL019649 CrossRefGoogle Scholar
  27. Tsuchiya J, Tsuchiya T, Wentzcovitch RM (2005) Vibrational and thermodynamic properties of MgSiO3 postperovskite. J Geophys Res 110:B02204. doi: 10.1029/2004JB003409 CrossRefGoogle Scholar
  28. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  29. Wu Y, Fei Y, Jin ZLX (2009) The fate of subducted upper continental crust: an experimental study. Earth Planet Sci Lett 282:275–284CrossRefGoogle Scholar
  30. Yagi A, Suzuki T, Akaogi M (1994) High-pressure transitions in the system KAlSi3O8–NaAlSi3O8. Phys Chem Min 21:12–17CrossRefGoogle Scholar
  31. Yu YG, Wentzcovitch RM, Tsuchiya T, Umemoto K, Weidner DJ (2007) First principles investigation of the postspinel transition in Mg2SiO4. Geophys Res Lett 34:L10306. doi: 10.1029/2007GL029462 CrossRefGoogle Scholar
  32. Zhao Y, Von Dreele RB, Shankland TJ, Weidner DJ, Zhang J, Wang Y, Gasparik T (1997) Thermoelastic equation of state of jadeite NaAlSi2O6: an energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction. Geophys Res Lett 24:5–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesTokyo Institute of TechnologyMeguroJapan
  2. 2.Geodynamics Research CenterEhime UniversityMatsuyamaJapan

Personalised recommendations