Physics and Chemistry of Minerals

, Volume 39, Issue 5, pp 363–372

Correlations between 11B NMR parameters and structural characters in borate and borosilicate minerals investigated by high-resolution MAS NMR and ab initio calculations

Original Paper


Borates consisting of diverse fundamental building blocks (FBB) formed from complex polymerization of planar triangular [Bϕ3] groups and tetrahedral [Bϕ4] groups, where ϕ = O and OH, provide an excellent opportunity for investigation of correlations between the NMR parameters and local structures. However, previous studies suggested that the 11B NMR parameters in borates are insensitive to local structural environments other than the B coordination number, in contrast to those documented for 29Si, 23Na and 27Al in silicates, and no correlation between 11B chemical shifts and the sum of bond valences has been established for borate minerals with hydroxyl groups or molecular water in the structures. In this study, high-resolution NMR spectra have been acquired at the ultra high field of 21 T as well as at 14 T for selected borate and borosilicate minerals, and have been used to extract high-precision NMR parameters by using combined ab initio theoretical calculations and spectral simulations. These new NMR parameters reveal subtle correlations with various structural characters, especially the effects of the 11B chemical shifts from the bridging oxygen atom(s), site symmetry, symmetry of FBB, the sum of bond valences, as well as the next-nearest-neighbor cations and hydrogen bonding. Also, these results provide new insights into the shielding mechanism for 11B in borate and borosilicate minerals. In particular, this study demonstrates that the small variation in 11B chemical shifts can still be used to probe the local structural environments and that the established correlations can be used to investigate the structural details in borates and amorphous materials.


Ultra high field High-resolution solid-state NMR Borates Borosilicates Ab initio calculations Bridging oxygen Nnn cations FBB symmetry Bond valence Correlation 


  1. Aguiar PM, Kroeker S (2007) Boron speciation and non-bridging oxygens in high-alkali borate glasses. J Non-Cryst Solids 353:1834–1839CrossRefGoogle Scholar
  2. Blaha P, Schwarz K, Herzig P (1985) First-principles calculation of the electric field gradient of Li3N. Phys Rev Lett 54:1192–1195CrossRefGoogle Scholar
  3. Blaha P, Schwarz K, Dederichs PH (1988) First-principles calculation of the electric field gradient in hcp metals. Phys Rev B37:2792–2796Google Scholar
  4. Blaha P, Schwarz K, Sorantin P (1990) Full potential linearized augmented plane wave programs for crystalline systems. Comput Phys Commun 59:415–439CrossRefGoogle Scholar
  5. Blaha P, Singh DJ, Sorantin PI, Schwarz K (1992) Electric-field-gradient calculations for systems with large extended-core-state contributions. Phys Rev B46:1321–1325Google Scholar
  6. Blaha P, Schwarz K, Madsen GK, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Technische Universität Wien, ViennaGoogle Scholar
  7. Bray P, Edwards J, O’Keefe J, Ross V, Tatsuzaki I (1961) Nuclear magnetic resonance studies of 11B in crystalline borates. J Chem Phys 35:435–442CrossRefGoogle Scholar
  8. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Cryst B47:192–197Google Scholar
  9. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst B41:244–247Google Scholar
  10. Brown ID, Shannon RD (1973) Empirical bond-strength bond-length curves for oxides. Acta Cryst A29:266–282Google Scholar
  11. Bryant PL, Harwell CR, Wu K, Fronczek FR, Hall RW, Butler LG (1999) Single-crystal 27Al NMR of andalusite and calculated electric field gradients: the first complete NMR assignment for a 5-coordinate aluminum site. J Phys Chem A103:5246–5252Google Scholar
  12. Burns PC (1995) Borate clusters and fundamental building blocks containing four polyhedra: why few clusters are utilized as fundamental building blocks of structures. Can Miner 33:1167–1176Google Scholar
  13. Burns PC, Hawthorne FC (1993) Hydrogen bonding in colemanite: an X-Ray and structure-energy study. Can Miner 31:297–304Google Scholar
  14. Burns PC, Hawthorne FC (1994) Kaliborite: an example of a crystallographically symmetrical hydrogen bond. Can Miner 32:885–894Google Scholar
  15. Christ C, Clark J (1977) A crystal-chemical classification of borate structures with emphasis on hydrated borates. Phys Chem Miner 2:59–87CrossRefGoogle Scholar
  16. Clark J (1959) Studies of borate minerals. IV. The crystal structure of inyoite, CaB3O3(OH)5·4H2O. Acta Cryst 12:162–170CrossRefGoogle Scholar
  17. Corazza E (1974) The crystal structure of kurnakovite: a refinement. Acta Cryst B30:2194–2199Google Scholar
  18. Corazza E (1976) Inderite: crystal structure refinement and relationship with kurnakovite. Acta Cryst B32:1329–1333Google Scholar
  19. Cottenier S (2002) Density functional theory and family of (L)APW-methods: a step-by-step introduction. Kern-en Stralingsfysica, K.U. Leuven, BelgiumGoogle Scholar
  20. Eichele E, Wasylishen RE (2001) WSOLIDS NMR simulation package, Version 1.17.30. Dalhousie University, HalifaxGoogle Scholar
  21. Filatov SK, Bubnova RS (2008) Structural mineralogy of borates as perspective materials for technological applications. Miner Adv Mater 1:111–115CrossRefGoogle Scholar
  22. Finney J, Kumbasar I (1970) Crystal structure of the calcium silicoborate, howlite. Am Miner 55:716–728Google Scholar
  23. Gajhede M, Larsen S, Rettrup S (1986) Electron density of orthoboric acid determined by X-ray diffraction at 105 K and ab initio calculations. Acta Cryst B42:545–552Google Scholar
  24. Ghose S, Wan C (1978) Ulexite, NaCaB5O6(OH)6·5H2O: structure refinement, polyanion configuration, hydrogen bonding and fiber optics. Am Miner 63:160–171Google Scholar
  25. Giacovazzo C, Menchetti S, Scordari F (1973) The crystal structure of tincalconite. Am Miner 58:523–530Google Scholar
  26. Giese RF (1966) Crystal structure of kernite, Na2B4O6(OH)2·3H2O. Science 154:1453–1454CrossRefGoogle Scholar
  27. Grice JD (2008) Szaibelyite: Crystal-structure analysis and hydrogen bonding. Can Miner 46:671–677CrossRefGoogle Scholar
  28. Grice JD, Burns PC, Hawthorne FC (1999) Borate minerals. II. A hierarchy of structures based upon the borate fundamental building block. Can Miner 37:731–762Google Scholar
  29. Guo G, Cheng W, Chen J, Zhuang H, Huang J, Zhang Q (1995) Monoclinic Mg2B2O5. Acta Cryst C51:2469–2471Google Scholar
  30. Hansen MR, Vosegaard T, Jakobsen HJ, Skibsted J (2004) 11B chemical shift anisotropies in borates from 11B MAS, MQMAS, and single-crystal NMR spectroscopy. J Phys Chem 108:586–594CrossRefGoogle Scholar
  31. Hansen MR, Madsen GK, Jakobsen HJ, Skibsted J (2005) Refinement of borate structures from 11B MAS NMR spectroscopy and density functional theory calculations of 11B electric field gradients. J Phys Chem A 109:1989–1997CrossRefGoogle Scholar
  32. Hansen MR, Georg KH, Madsen GKH, Jakobsen HJ, Skibsted J (2006) Evaluation of 27Al and 51V electric field gradients and the crystal structure for aluminum orthovanadate (AlVO4) by density functional theory calculations. J Phys Chem B110:5975–5983Google Scholar
  33. Hawthorne FC, Burns PC, Grice JD (1996) The crystal chemistry of boron. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33:41–115Google Scholar
  34. Karanovic L, Rosic A, Poleti D (2004) Crystal structure of nobleite, Ca[B6O9(OH)2]·3H2O, from Jarandol (Serbia). Eur J Miner 16:825–833CrossRefGoogle Scholar
  35. Kohn W, Sham LJ (1965) Self-consistent equation including exchange and correlation effects. Phys Rev 140(4A):1133–1138CrossRefGoogle Scholar
  36. Kroeker S, Stebbins JF (2001) Three-coordinated Boron-11 chemical shifts in borates. Inorg Chem 40:6239–6246CrossRefGoogle Scholar
  37. Levy HA, Lisensky GC (1978) Crystal structures of sodium sulfate decahydrate (Glauber’s Salt) and sodium tetraborate decahydrate (borax). Redetermination by neutron diffraction. Acta Cryst B34:3502–3510Google Scholar
  38. Li Z, Pan Y (2011) First-principles study of boron oxygen hole centers in crystals: electronic structures and nuclear hyperfine and quadrupole parameters. Phys Rev B 84:115112CrossRefGoogle Scholar
  39. Mason E (1987) Multinuclear NMR. Plenum Press, New YorkCrossRefGoogle Scholar
  40. Massiot D, Bessada C, Coutures JP, Taulelle F (1990) A quantitative study of 27Al MAS NMR in crystalline YAG. J Magn Reson 90:231–242CrossRefGoogle Scholar
  41. Menchetti S, Sabelli C, Trosti-Ferroni R (1982) Probertite, CaNa[B5O7(OH)4]·3H2O: refinement. Acta Cryst B38:3072–3075Google Scholar
  42. Müller D, Grimmer AR, Timper U, Heller G, Shakibaie-Moghadam MZ (1993) 11B-MAS-NMR-Untersuchungen zur Anionenstruktur von Boraten. Anorg Allg Chem 619:1262–1268CrossRefGoogle Scholar
  43. Peters CR, Milberg ME (1964) The refined structure of orthorhombic metaboric acid. Acta Crystal 17:229–234CrossRefGoogle Scholar
  44. Sherriff B, Zhou B (2004) 29Si & 23Na MAS NMR spectroscopic study of penkvilksite Na4Ti2Si8O22·5H2O. Can Miner 42:1027–1035CrossRefGoogle Scholar
  45. Skibsted J, Nielsen N, Bildsøe H, Jakobsen H (1991) Satellite transitions in MAS spectra of quadrupolar nuclei. J Magn Reson 95:117–132Google Scholar
  46. Stebbins JF, Zhao P, Kroeker S (2000) Non-bridging oxygens in borates glasses: characterization by 11B and 17O MAS and 3QMAS NMR. Solid State NMR 16:9–19CrossRefGoogle Scholar
  47. Sun W, Huang Y-X, Li Z, Pan Y, Mi J-X (2011) Hydrothermal synthesis and single-crystal X-ray structure refinement of three borates: sibirskite, parasibirskite and priceite. Can Miner 49:823–834CrossRefGoogle Scholar
  48. Turner GL, Smith KA, Kirkpatrick RJ, Oldfield E (1986) Boron-11 nuclear magnetic resonance spectroscopic study of borate and borosilicate minerals and a borosilicate glasses. J Magn Reson 67:544–550CrossRefGoogle Scholar
  49. Wan C, Ghose S (1977) Hungchaoite, Mg(H2O)5B4O5(OH)4·2H2O: a hydrogen-bonded molecular complex. Am Miner 62:1135–1143Google Scholar
  50. Weiss JWE, Bryce DL (2010) A solid-state 11B NMR and computational study of boron electric field gradient and chemical shift tensors in boronic acids and boronic esters. J Phys Chem A114:5119–5131Google Scholar
  51. Winkler B, Blaha P, Schwarz K (1996) Ab initio calculation of electric-field-gradient tensors of forsterite. Am Miner 81:545–549Google Scholar
  52. Yuan G, Xue D (2007) Crystal chemistry of borates: the classification and algebraic description by topological type of fundamental building blocks. Acta Cryst B63:353–362Google Scholar
  53. Zhao P, Kroeker S, Stebbins JF (2000) Non-bridging oxygen sites in barium borosilicate glasses: results from 11B and 17O NMR. J Non-Cryst Solids 276:122–131CrossRefGoogle Scholar
  54. Zhou B, Sherriff B (2004) Quantum calculation of the NMR quadrupolar interaction parameters for 27Al, 23Na and 9Be in the mineral tugtupite. Am Miner 89:377–381Google Scholar
  55. Zhou B, Sherriff B, Wu G, Taulelle F (2003) Nuclear magnetic resonance study of Al and F order in zunyite. Can Miner 41:891–903CrossRefGoogle Scholar
  56. Zhou B, Giavani T, Bildsoe H, Skibsted J, Jakobsen HJ (2005) Structural refinement of CsNO3(II) by coupling of 14N MAS NMR experiments with WIEN2k DFT calculations. Chem Phys Lett 402:133–137CrossRefGoogle Scholar
  57. Zhou B, Sherriff B, Hartman JS, Wu G (2007) 27Al and 23Na NMR spectroscopy and structural modeling of aluminofluoride minerals. Am Miner 92:34–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Bing Zhou
    • 1
    • 2
  • Zhaohua Sun
    • 1
  • Yefeng Yao
    • 3
  • Yuanming Pan
    • 4
  1. 1.Qinghai Institute of Salt LakesChinese Academy of SciencesBeijingChina
  2. 2.College of Materials Science and EngineeringTongji UniversityTongjiChina
  3. 3.Shanghai Key Laboratory of Magnetic ResonanceShanghaiChina
  4. 4.Department of Geological SciencesUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations