Skip to main content
Log in

The structure of the natural fossil resins of North Eurasia according to IR-spectroscopy and microscopic data

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Molecular and supermolecular structures of fossilized resins from the North Eurasia have been studied in detail by IR-spectroscopy, atomic force microscopy (AFM), scanning (SEM), and high-resolution transmission electron (HRTEM) microscopy. The analysis of the IR-spectroscopy data allowed to identify the types of the fossil resins (succinite, rumanite, retinite, etc.). In the succinites and rumanite, the supermolecular structure was observed by AFM. Sizes of the supermolecular particles are 50–120 nm. Some chain-like and cluster-like aggregates can be observed when globules contact with each other. Using SEM and HRTEM techniques, it has been shown that mineral impurities are mainly located as scattered inclusions (from one nanometers up to several tens micrometers in size) in an amorphous organic matrix of the resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alekseeva AV, Samarina LA (1968) The question of the chemical structure of amber. Chem Nat Comp 2:351–356. doi:10.1007/BF00564222

    Article  Google Scholar 

  • Anderson KB, Crelling JC (1995) Amber, resinite, and fossil resins. American Chemical Society, Washington, DC, pp 170–192. doi:10.1021/bk-1995-0617.fw001

    Google Scholar 

  • Baranov VA (2007) Quasicrystals of amber and other organic substances. Ukrainian Amber World, Proceedings of International conference, Kiev, pp 28–30

  • Barletta E, Wandelt K (2011) High resolution UHV-AFM surface analysis on polymeric materials: Baltic Amber. J Non-Cryst Sol 357:1473–1478. doi:10.1016/j.jnoncrysol.2010.12.039

    Article  Google Scholar 

  • Bartenev GM (1983) Physics and Mechanics of Polymers. Chemistry Press, Moscow

    Google Scholar 

  • Beck CW (1986) Spectroscopic investigation of amber. Appl Spectrosc Rev 22:57–110. doi:10.1080/05704928608060438

    Article  Google Scholar 

  • Beck CW, Wilbur E, Meret S, Kossove D, Kermani K (1965) The infra-red spectra of amber and the identification of Baltic amber. Archaeometry 8:96–109. doi:10.1111/j.1475-4754.1965.tb00896.x

    Article  Google Scholar 

  • Bogdasarov MA (2007) Mineralogy of fossil resins in Northern Eurasia. Geol Ore Depos 49:630–637. doi:10.1134/S1075701507070215

    Article  Google Scholar 

  • Bogdasarov MA (2009) Amber and others Fossil Resins of Eurasia. University Press, Brest

    Google Scholar 

  • Bogdasarov MA, Bushnev DA, Golubev YEA, Kovaleva OV, Shanina SN (2008a) Amber and amber-like fossil resins of Eurasia (part I). Izv VUZov, Geologiya i Razvedka 4:23–30

    Google Scholar 

  • Bogdasarov MA, Bushnev DA, Golubev YEA, Kovaleva OV, Shanina SN (2008b) Amber and amber-like fossil resins of Eurasia (part II). Izv Vyssh Uchebn Zaved, Geol Razvedka 5:27–32

    Google Scholar 

  • Brody RH, Edwards HGM, Pollard AM (2001) A study of amber and copal samples using FT-Raman spectroscopy. Spectrochim Acta A 57:1325–1338. doi:10.1016/S1386-1425(01)00387-0

    Article  Google Scholar 

  • Chiurca V, Vavra N (1990) Occurrence and chemical characterization of fossil resins from «Colti» (District of Buzau, Romania). N Jh Geol Paläont 5:283–294

    Google Scholar 

  • Clifford DJ, Hatcher PG (1995) Structural transformations of polylabdanoid resinites during maturation. Org Geochem 23:407–418. doi:10.1016/0146-6380(95)00022-7

    Article  Google Scholar 

  • Feist M, Lamprecht I, Müller F (2007) Thermal investigations of amber and copal. Thermochim Acta 408:162–170. doi:10.1016/j.tca.2007.01.029

    Article  Google Scholar 

  • Gold D, Hazen B, Miller W (1999) Colloidal and polymeric nature of fossil amber. Org Geochem 30:971–983. doi:10.1016/S0146-6380(99)00083-2

    Article  Google Scholar 

  • Golubev YA, Kovaleva OV (2010) Nanostructurization in X-ray amorphous organic substances of geological origin. Russ Khim Zhur 54:103–109 [Engl. transl.: Russ J Gen Chem 81:1366–1374, (2011)]. doi:10.1134/S1070363211060417

  • Grimalt JO, Simoneit BRT, Hatcher PG, Nissenbaum A (1988) The molecular composition of ambers. Org Geochem 13:677–690. doi:10.1016/0146-6380(88)90089-7

    Article  Google Scholar 

  • Haris A, Adachi T, Araki W (2008) Nano-scale characterization of fracture surfaces of blended epoxy resins related to fracture properties. Mat Sci Eng A 496:337–344. doi:10.1016/j.msea.2008.06.030

    Article  Google Scholar 

  • Jehlička J, Edwards HGM (2008) Raman spectroscopy as a tool for the non-destructive identification of organic minerals in the geological record. Org Geochem 39:371–386. doi:10.1016/j.orggeochem.2008.01.005

    Article  Google Scholar 

  • Jehlička J, Villar SEJ, Edwards HGM (2004) Fourier transform Raman spectra of Czech and Moravian fossil resins from freshwater sediments. J Raman Spectrosc. 35:761–767. doi:10.1002/jrs.1191

    Article  Google Scholar 

  • Jehlička J, Edwards HGM, Villar SEJ, Pokorný J (2005) Raman spectroscopic study of amorphous and crystalline hydrocarbons from soils, peats and lignite. Spectrochim Acta A 61:2390–2398. doi:10.1016/j.saa.2005.02.018

    Article  Google Scholar 

  • Kosmowska-Ceranowicz B (1999) Succinite and some other fossil resins in Poland and Europe (deposits, finds, features and differences in IRS). Estud del Museo de Ciencias Nat de Alava 14:73–117

    Google Scholar 

  • Kovalevski VV, Buseck PR, Cowley JM (2001) Comparison of carbon in shungite rocks to other natural carbons: an X-ray and TEM study. Carbon 39:243–256. doi:10.1016/S0008-6223(00)00120-2

    Article  Google Scholar 

  • Lambert JB, Frye JS, Poinar GO (1985) Amber from the Dominican Republic: analysis by nuclear magnetic resonance spectroscopy. Archaeometry 27:43–51. doi:10.1111/j.1475-4754.1985.tb00345.x

    Article  Google Scholar 

  • Lambert JB, Beck CW, Frye JS (1988) Analysis of European amber by carbon-13 nuclear magnetic resonance spectroscopy. Archaeometry 30:248–263. doi:10.1111/j.1475-4754.1988.tb00451.x

    Article  Google Scholar 

  • Martnez-Richa A, Vera-Graziano R, Rivera A, Joseph-Nathan P (2000) A solid-state 13C NMR analysis of ambers. Polymer 41:743–750. doi:10.1016/S0032-3861(99)00195-0

    Article  Google Scholar 

  • Mezzenga R, Plummer CJG, Boogh L, Manson JE (2001) Morphology build-up in dendritic hyperbranched polymer modified epoxy resins: modeling and characterization. Polymer 42:305–317. doi:10.1016/S0032-3861(00)00307-4

    Article  Google Scholar 

  • Mills JS, White R, Gough LJ (1984) The chemical composition of Baltic amber. Chem Geol 47:15–39. doi:10.1016/0009-2541(84)90097-4

    Article  Google Scholar 

  • Pereira R, Carvalho IS, Simoneit BRT, Azevedo D (2009) Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Recôncavo basins, Brazil. Org Geochem 40:863–875. doi:10.1016/j.orggeochem.2009.05.002

    Article  Google Scholar 

  • Perez J (1998) Physics and Mechanics of Amorphous Polymers. Taylor & Francis Press, Washington

    Google Scholar 

  • Popkova TN (1984) Microharden of some amber fossil resins. Zapiski VMO (Proc USSR Mineral Soc) 1:128–133

    Google Scholar 

  • Ragazzi E, Roghi G, Giaretta A, Gianolla P (2003) Classification of amber based on thermal analysis. Thermochim Acta 404:43–54. doi:10.1016/S0040-6031(03)00062-5

    Article  Google Scholar 

  • Rostiashvili VG, Irzhak VI, Rosenberg BA (1987) Polymer Glass-Transition. Chemistry Press, Leningrad

    Google Scholar 

  • Savkevich SS (1970) Amber. Nedra, Leningrad

    Google Scholar 

  • Savkevich SS (1981) Physical methods used to determine the geological origin of amber and other fossil resins: some critical remarks. Phys Chem Miner 7:1–4. doi:10.1007/BF00308192

    Article  Google Scholar 

  • Silvestre C, Cimmino S, D’Alma E, Di Lorenzo ML, Di Pace E (1999) Crystallization of isotactic polypropylene/natural terpene resins blends. Polymer 40:5119–5128. doi:10.1016/S0032-3861(98)00696-X

    Article  Google Scholar 

  • Srebrodolsky BI (1980) Ukrainian Amber. Naukova Dumka, Kiev

    Google Scholar 

  • Stout EC, Beck CW, Kosmowska-Ceranowicz B (1995) Gedanite and gedano-succinite. Amer Chem Soc Symp ser 617:130–148

    Google Scholar 

  • Stout EC, Beck CW, Anderson KB (2000) Identification of rumanite (Romanian amber) as thermally altered succinite (Baltic amber). Phys Chem Miner 9:0665–0678. doi:10.1007/s002690000111

    Article  Google Scholar 

  • Tazaki K, Tiba T, Aratani M, Miyachi M (1992) Structural water in volcanic glass. Clays Clay Mineral 40:122–127. doi:10.1346/CCMN.1992.0400113

    Article  Google Scholar 

  • Tonidandel L, Ragazzi E, Traldi P (2009) Mass spectrometry in the characterization of ambers. II. Free succinic acid in fossil resins of different origin. Rapid Commun Mass Spectrom 23:403–408. doi:10.1002/rcm.3886

    Article  Google Scholar 

  • Vavra N (2002) Fossil resin (“amber”) from the Paleocene of Renardodden (E cape Lyell, west Spitsbergen, Svalbard). Univ Hamburg, Geologisch-Paläontologische Institute, pp 263–277

    Google Scholar 

  • Vavra N (2009) The chemistry of amber—facts, findings and opinions. Ann Naturhist Mus Wien 111:445–474

    Google Scholar 

  • Villanueva-García M, Martínez-Richa A, Robles J (2005) Assignment of vibrational spectra of labdatriene derivatives and ambers: a combined experimental and density functional theoretical study. Arkivoc vi:449–458

    Google Scholar 

  • Wang H (1989) A mineralogical study of amber from Xixia region, Henan Province. Kuangwu Xuebao 9:338–344

    Google Scholar 

  • Yushkin NP, Sergeeva ND (1974) Textural features of Yugorian amber. Dokl Akad Nauk SSSR 216:637–640

    Google Scholar 

Download references

Acknowledgments

This research was funded partially by The Programs of Presidium of Russian Academy of Science no. 09-C-5-1022, 27, Scientific School (grant 7198.2010.5). Authors thank Vasily N. Filippov for the realization of the X-ray spectral analysis. The authors are grateful to Dr. Elena Suvorova for the TEM observations. The support of the Centre Interdisciplinaire de Microscopie Electronique of the Ecole Polytechnique Fédérale de Lausanne is acknowledged for making available the electron microscope. We are especially grateful to Dr. Maxim A. Bogdasarov for fossil resin samples and consultation. We also thank reviewers of this work for their remarks and wording assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeny A. Golubev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubev, Y.A., Martirosyan, O.V. The structure of the natural fossil resins of North Eurasia according to IR-spectroscopy and microscopic data. Phys Chem Minerals 39, 247–258 (2012). https://doi.org/10.1007/s00269-011-0480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0480-x

Keywords

Navigation