Skip to main content
Log in

The influence on Fe content on Raman spectra and unit cell parameters of magnesite–siderite solid solutions

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Characterization of a set of iron–magnesium carbonate mineral samples was done by Raman spectroscopy, X-ray diffraction and electron microprobe. The evolution of unit cell parameters and of the Raman peak positions of the three vibrations modes T, L and 2ν2 are reported as a function of the Fe content. Fourteen samples spanning the compositional range from FeCO3 siderite to MgCO3 magnesite were used for this calibration. Such a calibration provides a non-destructive and rapid method for extracting mineral chemistry, suitable for samples that cannot be moved and need immediate analysis or for samples that cannot be destructed or that are in small quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bischoff WD, Sharma SK, Mackenzie FT (1985) Carbonate ion disorder in synthetic and biogenic magnesian calcites—a Raman spectral study. Am Miner 70(5–6):581–589

    Google Scholar 

  • Blanchard M, Poitrasson F, Méheut M, Lazzeri M, Mauri F, Balan E (2009) Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): a first-principles density functional theory study. Geochim Cosmochim Acta 73:6565–6578

    Article  Google Scholar 

  • Couture L (1947) Etude de spectres de vibrations de monocristaux ioniques. Ann Phys 17:88–122

    Google Scholar 

  • Edwards HGM, Villar SEJ, Jehlicka J, Munshi T (2005) FT-Raman spectroscopic study of calcium- rich and magnesium-rich carbonate minerals. Spectroc Acta Pt A-Molec Biomolec Spectr 61(10):2273–2280. doi:10.1016/j.saa.2005.02.026

    Article  Google Scholar 

  • Effenberger H, Mereiter K, Zemann J (1981) Crystal-structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z Kristall 156(3–4):233–243

    Article  Google Scholar 

  • Gillet P (1999) Introduction to Raman spectroscopy at extreme pressure and temperature conditions. In: Wright K, Catlow R (eds) Microscopic properties and processes in minerals. Kluwer, Netherlands, pp 43–69

    Google Scholar 

  • Graf DL (1961) Crystallographic tables for the rhombohedral carbonates. Am Miner 46(11–12):1283–1316

    Google Scholar 

  • Guyot F, Daval D, Dupraz S, Martinez I, Ménez B, Sissmann O (2011) CO2 geological storage: the environmental mineralogy perspective. Comptes Rendus Geosci 343(2–3):246–259

    Article  Google Scholar 

  • Kasting JF (1987) Theoretical constraints on oxygen and carbon-dioxide concentrations in the precambrian atmosphere. Precambrian Res 34(3–4):205–229

    Article  Google Scholar 

  • Kholodov VN, Butuzova GY (2008) Siderite formation and evolution of sedimentary iron ore deposition in the earth’s history. Geol Ore Depos 50(4):299–319. doi:10.1134/s107570150804003x

    Article  Google Scholar 

  • Kuebler KE, Jolliff BL, Wang A, Haskin LA (2006) Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions. Geochim Cosmochim Acta 70(24):6201–6222. doi:10.1016/j.gca.2006.07.035

    Article  Google Scholar 

  • Langille DB, Oshea DC (1977) Raman-spectroscopy studies of antiferromagnetic FeCO3 and related carbonates. J Phys Chem Solids 38(10):1161–1171

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86

  • Lavina B, Dera P, Downs RT, Yang WG, Sinogeikin S, Meng Y, Shen GY, Schiferl D (2010) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82(6):064110. doi:10.1103/PhysRevB.82.064110

    Google Scholar 

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  • Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Miner 70(5–6):590–600

    Google Scholar 

  • Morris RV, Ruff SW, Gellert R, Ming DW, Arvidson RE, Clark BC, Golden DC, Siebach K, Klingelhofer G, Schroder C, Fleischer I, Yen AS, Squyres SW (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329(5990):421–424. doi:10.1126/science.1189667

    Article  Google Scholar 

  • Oh KD, Morikawa H, Iwai S, Aoki H (1973) Crystal-structure of magnesite. Am Miner 58(11–1):1029–1033

    Google Scholar 

  • Rividi N, van Zuilen M, Philippot P, Menez B, Godard G, Poidatz E (2010) Calibration of carbonate composition using micro-Raman analysis: application to planetary surface exploration. Astrobiology 10(3):293–309. doi:10.1089/ast.2009.0388

    Article  Google Scholar 

  • Ross NL (1997) The equation of state and high-pressure behavior of magnesite. Am Miner 82(7–8):682–688

    Google Scholar 

  • Rutt HN, Nicola JH (1974) Raman-spectra of carbonates of calcite structure. J Phys C Solid State Phys 7(24):4522–4528

    Article  Google Scholar 

  • Smith DC (2005) The Ramanita (c) method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts. Spectroc Acta Pt A-Molec Biomolec Spectr 61(10):2299–2314. doi:10.1016/j.saa.2005.02.029

    Article  Google Scholar 

  • White WB (1974) The carbonate minerals. In: Farmer VC (ed) The infra-red spectra of minerals. Mineralogical society monograph, vol 4. Mineralogical Society, London, pp 227–284

    Google Scholar 

  • Zemann J (1981) Crystal-chemistry of carbonates. Z Kristall 154(3–4):235–244

    Google Scholar 

Download references

Acknowledgments

We thank M. Fialin and F. Couffignal for assistance with EPMA. Special thanks to JC. Bouillard from the collection of mineralogy UPMC. Three anonymous reviewers and associate editor Abby Kavner are warmly acknowledged for helping to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Boulard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulard, E., Guyot, F. & Fiquet, G. The influence on Fe content on Raman spectra and unit cell parameters of magnesite–siderite solid solutions. Phys Chem Minerals 39, 239–246 (2012). https://doi.org/10.1007/s00269-011-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0479-3

Keywords

Navigation