Skip to main content

Advertisement

Log in

Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The synthetic solid solutions between lead fluorapatite and lead fluorvanadate apatite, Pb10[(PO4)6−x (VO4) x ]F2 with x equal to 0, 1, 2, 3, 4, 5, and 6, were compressed up to about 9 GPa at ambient temperature by using a diamond-anvil cell coupled with synchrotron X-ray radiation. A second-order Birch–Murnaghan equation of state was used to fit the data. As the substitution of the PO4 3− cations by the VO4 3− cations progresses, the isothermal bulk modulus steadily decreases, with a maximum reduction of about 16% (from 68.4(16) GPa for Pb10(PO4)6F2 to 57.2(28) GPa for Pb10(VO4)6F2). For the entire composition range, the a-axis dimension remains more compressible than the c-axis dimension, with the ratio of the axial bulk moduli (K Tc :K Ta ) larger than 1. The ratio of K Tc to K Ta increases from about 1.04(4) to 1.23(14) as the composition parameter x increases from 0 to 6, suggesting that the apatite solid solutions Pb10[(PO4)6−x (VO4) x ]F2 become more elastically anisotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America, Chantilly, pp 35–60

    Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–924

    Article  Google Scholar 

  • Blundy JD, Wood BJ (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  Google Scholar 

  • Boechat CB, Eon J-G, Rossi AM, Perez CAD, San Gil RAD (2000) Structure of vanadate in calcium phosphate and vanadate apatite solid solutions. Phys Chem Chem Phys 2:4225–4230

    Article  Google Scholar 

  • Brunet F, Allan DR, Redfern SAT, Angel RJ, Miletich RM, Reichmann HJ, Sergent J, Hanfland M (1999) Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. Eur J Miner 11:1023–1035

    Google Scholar 

  • Chernorukov NG, Knyazev AV, Bulanov EN (2010) Isomorphism and phase diagram of the Pb5(PO4)3Cl-Pb5(VO4)3Cl system. Russ J Inorg Chem 55:1463–1470

    Article  Google Scholar 

  • Ching WY, Rulis P, Misra A (2009) Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater 5:3067–3075

    Article  Google Scholar 

  • Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001a) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Miner 28:219–224

    Article  Google Scholar 

  • Comodi P, Liu Y, Frezzotti ML (2001b) Structural and vibrational behaviour of fluorapatite with pressure. Part II: in situ micro-raman spectroscopic investigation. Phys Chem Miner 28:225–231

    Article  Google Scholar 

  • Fleet ME, Liu X (2007) Hydrogen-carbonate ion in synthetic high-pressure apatite. Am Miner 92:1764–1767

    Article  Google Scholar 

  • Fleet ME, Pan Y (1997) Rare earth elements in apatite: uptake from H2O-bearing phosphate-fluoride melts and the role of volatile components. Geochim Cosmochim Acta 61:4745–4760

    Article  Google Scholar 

  • Fleet ME, Liu X, Pan Y (2000a) Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2]. J Solid State Chem 149:391–398

    Article  Google Scholar 

  • Fleet ME, Liu X, Pan Y (2000b) Rare-earth elements in chlorapatite [Ca10(PO4)6Cl2]: uptake, site preference, and degradation of monoclinic structure. Am Miner 85:1437–1446

    Google Scholar 

  • Fleet ME, Liu X, Shieh SR (2010) Structural change in lead fluorapatite at high pressure. Phys Chem Miner 37:1–9

    Article  Google Scholar 

  • Gatta GD, Lee Y, Kao CC (2009) Elastic behavior of vanadinite, Pb10(VO4)6Cl2, a microporous non-zeolitic mineral. Phys Chem Miner 36:311–317

    Article  Google Scholar 

  • Gilmore RS, Katz JL (1982) Elastic properties of apatites. J Mater Sci 17:1131–1141

    Article  Google Scholar 

  • Hammersley J (1996) Fit2D report. Europe Synchrotron Radiation Facility, Grenoble, France

    Google Scholar 

  • Hardcastle FD, Wachs IE (1991) Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J Phys Chem 95:5031–5041

    Article  Google Scholar 

  • He Q, Liu X, Hu X, Li S, Wang H (2011) Solid solution between lead fluorapatite and lead fluorvanadate apatite: mixing behavior, Raman feature and thermal expansivity. Phys Chem Miner 38:741–752

    Article  Google Scholar 

  • Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl). In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates. Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, pp 1–12

    Google Scholar 

  • Kim JY, Fenton RR, Hunter BA, Kennedy BJ (2000) Powder diffraction studies of synthetic calcium and lead apatites. Aust J Chem 53:679–686

    Article  Google Scholar 

  • Klemme S, Dalpé C (2003) Trace-element partitioning between apatite and carbonatite melt. Am Miner 88:639–646

    Google Scholar 

  • Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Miner 93:1581–1584

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Zhang L (2009) Compressibility of a natural kyanite at 300 K. Prog Nat Sci 19:1281–1286

    Article  Google Scholar 

  • Liu X, Fleet ME, Shieh SR, He Q (2011a) Synthetic lead bromapatite: X-ray structure at ambient pressure and compressibility up to about 20 GPa. Phys Chem Miner 38:397–406

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Zhang L, He Q (2011b) Equation of state of carbonated hydroxylapatite at ambient temperature: significance of carbonate. Am Miner 96:74–80

    Article  Google Scholar 

  • Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pt, and Au and calibration of rub R1 fluorescence pressure gauge for 0.006–1 Mbar. J Appl Phys 49:3276–3283

    Article  Google Scholar 

  • Matsukage KN, Ono S, Kawamoto T, Kikegawa T (2004) The compressibility of a natural apatite. Phys Chem Miner 31:580–584

    Article  Google Scholar 

  • Mercier PHJ, Dong J, Baikie T, Page YL, White TJ, Whitfield PS, Mitchel LD (2007) Ab initio constrained crystal-chemical Rietveld refinement of Ca10(VxP1−xO4)6F2 apatites. Acta Cryst B63:37–48

    Google Scholar 

  • Murayama JK, Nakai S, Kato M, Kumazawa M (1986) A dense polymorph of Ca3(PO4)2: a high pressure phase of apatite decomposition and its geochemical significance. Phys Earth Planet Int 44:293–303

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Chantilly, pp 13–49

    Google Scholar 

  • Popović L, de Waal D, Boeyens JCA (2005) Correlation between Raman wavenumbers and P–O bond lengths in crystalline inorganic phosphates. J Raman Spectrosc 36:2–11

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527

    Article  Google Scholar 

  • Sha MC, Li Z, Brad RC (1994) Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. J Appl Phys 75:7784–7787

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Google Scholar 

  • Snyders R, Music D, Sigumonrong D, Schelnberger B, Jensen J, Schneider JM (2007) Experimental and ab initio study of the mechanical properties of hydroxyapatite. Appl Phys Lett 90:193902

    Article  Google Scholar 

  • Teraoka K, Ito A, Maekawa K, Onuma K, Tateishi T, Tsutsumi S (1998) Mechanical properties of hydroxyapatite and OH-carbonated hydroxyapatite single crystals. J Dent Res 77:1560–1568

    Article  Google Scholar 

  • Yoon HS, Newnham RE (1969) Elastic properties of fluorapatite. Am Miner 54:1193–1197

    Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers and Professor M. Matsui who provided us with constructive comments which substantially improved the quality of our paper. We thank the National Natural Science Foundation of China (Grant 40872033 and 41090371) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Liu, X., Hu, X. et al. Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction. Phys Chem Minerals 39, 219–226 (2012). https://doi.org/10.1007/s00269-011-0477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0477-5

Keywords

Navigation