Skip to main content

Advertisement

Log in

DFT study of Rb-TFA structure after high-pressure action

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The pressure-induced A-B phase transition of synthetic Rb-tetra-ferri-annite (Rb-TFA) mica was studied theoretically by means of Density Functional Theory (DFT) method. The calculations show that Rb-TFA keeps a Franzini A-type structure up to at least 5.39 GPa of pressure, whereas at higher pressure, it transforms to a Franzini B-type structure. The negative value of the tetrahedral rotation angle α = −4.68° has appeared at 5.56 GPa of calculated pressure. This result is in a relatively good agreement with experimentally estimated phase transition area in the range of 3.36−3.84 GPa. The energy difference between the A and B structures is very small (ΔE = 8 kJ/mol). The detailed analysis of the optimized structural data shows minimal changes in the structure of Rb-TFA after the pressure-induced phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bloechl PE (1994) Projector augmented-wave method. Phys Rev B50:17953–17979

    Google Scholar 

  • Bylander DM, Kleinman L, Lee S (1990) Self-consistent calculations of the energy bands and bonding properties of B12C3. Phys Rev B42:1394–1403

    Google Scholar 

  • Comodi P, Zanazzi PF, Weiss Z, Rieder M, Drábek M (1999) Cs-tetra-ferri-annite: high-pressure and high-temperature behavior of a potential nuclear waste disposal state. Am Mineral 84:325–332

    Google Scholar 

  • Comodi P, Drábek M, Montagnoli M, Rieder M, Weiss Z, Zanazzi PF (2003) Pressure-induced phase transition in synthetic trioctahedral Rb-mica. Phys Chem Miner 30:198–205

    Article  Google Scholar 

  • Franzini M (1969) The A and B mica layers and the crystal structure of sheet silicates. Contr Miner Petrol 21:203–224

    Article  Google Scholar 

  • Kresse G, Furthmuller J (1996a) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6:15–50

    Article  Google Scholar 

  • Kresse G, Furthmuller J (1996b) Efficient iterative scheme for ab-intio total energy calculations using a plane-wave basis set. Phys Rev B54:11169–11186

    Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular-dynamics for open-shell transition-metals. Phys Rev B 48:13115–13118

    Article  Google Scholar 

  • Kresse G, Hafner J (1994) Norm conserving and ultrasoft potentials for first-row and transition-elements. J Phys Condens Matt 6:8245–8527

    Article  Google Scholar 

  • Kresse G, Joubert J (1999) From ultrasoft potentials to the projector augmented wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  • Ortega-Castro J, Hernández-Haro N, Timón V, Sainz-Díaz CI, Hernández-Laguna A (2010) High pressure behavior of 2M 1 muscovite. Am Mineral 95:249–259

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  • Piekarz P, Jochym PT, Parlinski K (2002) High-pressure and thermal properties of gamma-Mg2SiO4 from first-principles calculations. J Chem Phys 117(7):3340–3344

    Article  Google Scholar 

  • Prencipe M, Nestola F (2005) Quantum-mechanical modeling of minerals at high pressures. The role of the Hamiltonian in a case study: the beryl (Al4Be6Si12O36). Phys Chem Miner 32(7):471–479

    Article  Google Scholar 

  • Prencipe M, Scanavino I, Nestola F, Merlini M, Civalleri B, Bruno M, Dovesi R (2011) High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Phys Chem Miner 38:223–239

    Article  Google Scholar 

  • Redhammer GJ, Roth G (2002) Single-crystal structure refinements and crystal chemistry of synthetic trioctahedral micas KM3(Al3+, Si4+)4O10(OH)2, where M = Ni2+, Mg2+, Co2+, Fe2+, or Al3+. Am Miner 87:1464–1476

    Google Scholar 

  • Scholtzová E, Smrčok Ľ (2005) On local structural changes in lizardite 1T: Si4+/Al3+}, {Si4+/Fe3+}, {Mg2+/Al3+}, {Mg2+/Fel3+ substitutions. Phys Chem Miner 32(5–6):362–373

    Article  Google Scholar 

  • Spek AL (2003) PLATON. A multipurpose crystallographic tool. Utrecht University, Utrecht, The Netherlands

    Google Scholar 

  • Teter MP, Payne MC, Allan DC (1989) Solution of Schrodinger’s equations for large systems. Phys Rev B40:12255–12263

    Google Scholar 

  • Vočadlo L (1999) First principles calculations on the high-pressure behavior of magnesite. Am Mineral 84:1627–1631

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Slovak Grant Agency (grant VEGA 2/0150/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Scholtzová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholtzová, E. DFT study of Rb-TFA structure after high-pressure action. Phys Chem Minerals 38, 819–824 (2011). https://doi.org/10.1007/s00269-011-0454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0454-z

Keywords

Navigation