Skip to main content
Log in

The electric field gradient in natural iron-doped chrysoberyl Al2BeO4 and sinhalite MgAlBO4 single crystals

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

This work reports on the evaluation of the electric field gradient (EFG) in natural chrysoberyl Al2BeO4 and sinhalite MgAlBO4 using two different procedures: (1) experimental, with single crystal Mössbauer spectroscopy (SCMBS) on the three principal sections of each sample and (2) a “fully quantitative” method with cluster molecular orbital calculations based on the density functional theory. Whereas the experimental and theoretical results for the EFG tensor are in quantitative agreement, the calculated isomer shifts and optical d–d-transitions exhibit systematic deviations from the measured values. These deviations indicate that the substitution of Al and Mg with iron should be accompanied by considerable local expansion of the coordination octahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A38:3098–3100

    Google Scholar 

  • Burns RG (1994) Mineral Mössbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters. Hyperfine Int 91:739–745

    Article  Google Scholar 

  • Claringbull GF, Hey MH (1952) Sinhalite (MgAlBO4), a new mineral. Min Mag 29:841–849

    Article  Google Scholar 

  • Dufek P, Blaha P, Schwarz K (1995) Determination of the nuclear quadrupole moment of 57Fe. Phys Rev Lett 75:3545–3548

    Article  Google Scholar 

  • Fang JH, Newnham RE (1965) The crystal structure of sinhalite. Min Mag 35:196–199

    Article  Google Scholar 

  • Farrell EF, Newnham RE (1965) Crystal-field spectra of chrysoberyl, alexandrite, peridote, and sinhalite. Am Miner 50:1972–1981

    Google Scholar 

  • Farrell EF, Fang JH, Newnham RE (1963) Refinement of the chrysoberyl structure. Am Miner 48:804–810

    Google Scholar 

  • Farrugia LJ (1999) WinGX suite for small molecule single crystal crystallography. J Appl Crystallogr 32:837–838

    Article  Google Scholar 

  • Gonser K (1975) From a strange effect to Mössbauer spectroscopy. In: Gonser K (ed) Topics in applied physics, vol 5. Mössbauer spectroscopy. Springer, Berlin, pp 1–51

    Google Scholar 

  • Grodzicki M (1980) A self-consistent charge Xα method. I. Theory. J Phys B13:2683–2691

    Google Scholar 

  • Grodzicki M (1985) Theorie und Anwendungen der Self-Consistent-Charge-Xα Methode. Thesis of habilitation, Hamburg

  • Grodzicki M, Amthauer G (2000) Electronic and magnetic structure of vivianite: cluster molecular orbital calculations. Phys Chem Miner 27:694–702

    Article  Google Scholar 

  • Grodzicki M, Lebernegg S (2011) Computation and Interpretation of Mössbauer Parameters of Fe-bearing Compounds. In: Gütlich P, Bill E, Trautwein AX (eds) Mössbauer spectroscopy and transition metal chemistry (on CD-ROM). Springer, Berlin

    Google Scholar 

  • Grodzicki M, Männing V, Trautwein AX, Friedt JM (1987) Calibration of isomer shift and quadrupole coupling for 119Sn, 127I and 129I as derived from self-consistent-charge Xα calculations and Mössbauer measurements. J Phys B20:5595–5625

    Google Scholar 

  • Grodzicki M, Redhammer G, Reissner M, Steiner W, Amthauer G (2010) Electronic and magnetic structure of pyroxenes I. Hedenbergite. Phys Chem Miner 37:11–23

    Article  Google Scholar 

  • Hawthorne FC (1988) Mössbauer spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology: reviews in mineral vol 18. Mineral Society of America, Chantilly, pp 255–340

    Google Scholar 

  • Hayward CL, Angel RJ, Ross NL (1994) The structural redetermination and crystal chemistry of sinhalite, MgAlBO4. Eur J Miner 6:313–321

    Google Scholar 

  • Höche T, Grodzicki M, Heyroth F, van Aken PA (2005) Assessment of transition-metal coordination in glasses by electron energy-loss spectroscopy. Phys Rev B72:205111 (6 pp)

    Google Scholar 

  • Keutel H, Käpplinger I, Jäger EG, Grodzicki M, Schünemann V, Trautwein AX (1999) Structural, magnetic and electronic properties of a pentacoordinated intermediate-spin (S = 3/2) iron(III) complex with a macrocyclic [N4]2− ligand. Inorg Chem 38:2320–2327

    Article  Google Scholar 

  • Lauer S, Marathe VR, Trautwein AX (1979) Sternheimer shielding using various approximations. Phys Rev A19:1852–1861

    Google Scholar 

  • Lottermoser W, Kaliba P, Forcher K, Amthauer G (1993) MOESALZ: a computer program for the evaluation of Mössbauer data. Unpublished. Univ. of Salzburg, Austria

  • Lottermoser W, Steiner K, Grodzicki M, Jiang K, Scharfetter G, Bats JW, Redhammer G, Treutmann W, Hosoya S, Amthauer G (2002) The electric field gradient in synthetic fayalite α-Fe2SiO4 at moderate temperatures. Phys Chem Miner 29:112–121

    Article  Google Scholar 

  • McCammon CA (2004) Mössbauer spectroscopy: applications. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. EMU notes mineral vol 6. Eötvös University Press, Budapest, pp 369–398

    Google Scholar 

  • Pitman LC, Hurlbut CS Jr, Francis CA (1995) Euhedral sinhalite crystals from Sri Lanka. Mineral Rec 26:91–94

    Google Scholar 

  • Renner B, Lehmann G (1986) Correlation of angular and bond lengths distortion in TO4 units in crystals. Z Kristallogr 175:43–59

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Scalvi RMF, de Oliveira Ruggiero L, Siu Li M (2002) Influence of annealing on X-ray diffraction of natural alexandrite. Powder Differ 17(2):135–138

    Article  Google Scholar 

  • Sheldrick G (1997) SHELXS-97 and SHELXL-97, programs for solving and refining crystal structures. University of Göttingen, Germany

    Google Scholar 

  • Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin-density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  Google Scholar 

  • Weber SU, Grodzicki M, Lottermoser W, Redhammer GJ, Tippelt G, Ponahlo J, Amthauer G (2007) 57Fe Mössbauer spectroscopy, X-ray single crystal diffractometry and electronic structure calculations on natural alexandrite. Phys Chem Miner 34:507–515

    Article  Google Scholar 

  • Weber SU, Grodzicki M, Lottermoser W, Redhammer GJ, Topa D, Tippelt G, Amthauer G (2009) 57Fe Mössbauer spectroscopy, X-ray single crystal diffractometry and electronic structure calculations on natural sinhalites. Phys Chem Miner 36:259–269

    Article  Google Scholar 

  • Werding G, Alsumady K, Schreyer W, Medenbach O (1981) Low pressure synthesis, physical properties, miscibility, and preliminary stability of sinhalite, MgAlBO4. N Jb Miner Abh 141:201–216

    Google Scholar 

Download references

Acknowledgments

The authors thank W. Waldhör, Salzburg, for providing the polishing of the natural chrysoberyl and sinhalite single crystal cuts. All calculations were carried out at the Department of Computer Sciences in Salzburg. Financial support by the Austrian Fund for Scientific Research (FWF) under the grant number P18329-N20 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Lottermoser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lottermoser, W., Redhammer, G.J., Weber, SU. et al. The electric field gradient in natural iron-doped chrysoberyl Al2BeO4 and sinhalite MgAlBO4 single crystals. Phys Chem Minerals 38, 787–799 (2011). https://doi.org/10.1007/s00269-011-0451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0451-2

Keywords

Navigation