Skip to main content
Log in

Solid solution between lead fluorapatite and lead fluorvanadate apatite: mixing behavior, Raman feature and thermal expansivity

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The solid solution between lead fluorapatite and lead fluorvanadate apatite, Pb10[(PO4)6-x (VO4) x ]F2 with x equal to 0, 1, 2, 3, 4, 5 and 6, was synthesized by solid-state reaction at 1 atm and 700°C for 72 h and characterized by scanning electronic microprobe, electronic microprobe analysis, micro-Raman spectroscopy, and powder X-ray diffraction. The volume-composition relationship at ambient temperature does not show significant deviation from the Vegard’s Law. The Raman spectrum data suggest that both P and V are identical on a C s site and both end-members show no apparent factor-group effect. The Raman frequency shift of the symmetric stretching vibration is linearly dependent on the composition. High temperature X-ray diffraction data, up to 600°C, suggest that the thermal expansion coefficients α a , α c , and α V also vary linearly with the compositions of the apatites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler HH (1964) Infrared spectra of phosphate minerals: symmetry and substitutional effects in the pyromorphite series. Am Mineral 49:1002–1015

    Google Scholar 

  • Adler HH (1968) Infrared spectra of phosphate minerals: splitting and frequency shifts associated with substitution of PO4 3− for AsO4 3− in mimetite (Pb5(AsO4)3Cl). Am Mineral 53:1740–1744

    Google Scholar 

  • Badraoui B, Aissa A, Bigi A, Debbabi M, Gazzano M (2006) Structural investigations of lead-strontium fluoroapatites. J Solid State Chem 179:3065–3072

    Article  Google Scholar 

  • Baker WE (1966) An X-ray diffraction study of synthetic members of the pyromorphite series. Am Mineral 51:1712–1721

    Google Scholar 

  • Bartholomäi G, Klee WE (1978) The vibrational spectra of pyromorphite, vanadinite and mimetite. Spectrochim Acta 34A:831–843

    Google Scholar 

  • Bauer M, Klee WE (1993) The monoclinic-hexagonal phase transition in chlorapatite. Eur J Mineral 5:307–316

    Google Scholar 

  • Belokoneva EL, Troneva EA, Dem’yanets LN, Duderov NG, Belov NV (1982) Crystal structure of synthetic fluoropyromorphite Pb5(PO4)3F. Sov Phys Crystallogr 27:476–477

    Google Scholar 

  • Beran A, Voll D, Schneider H (2004) IR spectroscopy as a tool for the characterization of ceramic precursor phases. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. EMU notes in mineralogy, vol 6. European Mineralogical Union, Budapest, pp 189–226

    Google Scholar 

  • Bhatnager VM (1971) X-ray and Infrared studies of lead apatites. Can J Chem 49:662–663

    Article  Google Scholar 

  • Boechat CB, Eon J-G, Rossi AM, Andre′ de Castro Perez C, Aguiar da Silva San Gil R (2000) Structure of vanadate in calcium phosphate and vanadate apatite solid solutions. Phys Chem Chem Phys 2:4225–4230

    Article  Google Scholar 

  • Brunet F, Allan DR, Redfern SAT, Angel RJ, Miletich RM, Reichmann HJ, Sergent J, Hanfland M (1999) Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. Eur J Mineral 11:1023–1035

    Google Scholar 

  • Chernorukov NG, Knyazev AV, Bulanov EN (2010) Isomorphism and phase diagram of the Pb5(PO4)3Cl-Pb5(VO4)3Cl system. Russ J Inorg Chem 55:1463–1470

    Article  Google Scholar 

  • Cockbain AG (1968) Lead apatite solid-solution series. Mineral Mag 36:1171–1173

    Google Scholar 

  • Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Mineral 28:219–224

    Article  Google Scholar 

  • Dong ZL, White TJ, Sun K, Wang LM, Ewing RC (2005) Electron irradiation induced transformation of (Pb5Ca5)(VO4)6F2 apatite to CaVO3 perovskite. J Am Ceram Soc 88:184–190

    Article  Google Scholar 

  • Elliott JC (2002) Calcium phosphates biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Chantilly, pp 427–453

    Google Scholar 

  • Eon JG, Boechat CB, Rossi AM, Terra J, Ellis DE (2006) A structural analysis of lead hydroxyvanadinite. Phys Chem Chem Phys 8:1845–1851

    Article  Google Scholar 

  • Fischer GR, Bardhan P, Geiger JE (1983) The lattice thermal expansion of hydroxyapatite. J Mater Sci Lett 2:577–578

    Article  Google Scholar 

  • Fleet ME, Liu X, Shieh SR (2010) Structural change in lead fluorapatite at high pressure. Phys Chem Mineral 37:1–9

    Article  Google Scholar 

  • Frost RL, Palmer SJ (2007) A Raman spectroscopic study of the phosphate mineral pyromorphite Pb5(PO4)3Cl. Polyhedron 26:4533–4541

    Article  Google Scholar 

  • Frost RL, Crane M, Williams PA, Theo Kloprogge J (2003) Isomorphic substitution in vanadinite [Pb5(VO4)3Cl]-a Raman spectroscopic study. J Raman Spectrosc 34:214–220

    Article  Google Scholar 

  • Grisafe DA, Hummel FA (1970) Pentavalent Ion substitution in the apatite structure part A. Crystal chemistry. J Solid State Chem 2:160–166

    Article  Google Scholar 

  • Gupta SK, Rao PVR, Narasaraju TSB (1986) Physico-chemical aspects of calcium vanadate apatite. J Mater Sci 21:161–164

    Article  Google Scholar 

  • Hardcastle FD, Wachs IE (1991) Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J Phys Chem 95:5031–5041

    Article  Google Scholar 

  • Hata M, Marumo F, Iwai SI (1980) Structure of a lead apatite Pb9(PO4)6. Acta Cryst B36:2128–2130

    Google Scholar 

  • Hu X, Liu X, He Q, Wang H, Qin S, Ren L, Wu C, Chang L (2011) Thermal expansion of andalusite and sillimanite at ambient pressure: a powder X-ray diffraction study up to 1,000°C. Mineral Mag 75:363–374

    Article  Google Scholar 

  • Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl). In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates. Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, pp 1–12

    Google Scholar 

  • Kerrick DM, Darken LS (1975) Statistical thermodynamic models for ideal oxide and silicate solid solutions, with application to plagioclase. Geochim Cosmochim Acta 39:1431–1442

    Article  Google Scholar 

  • Kim JY, Fenton RR, Hunter BA, Kennedy BJ (2000) Powder diffraction studies of synthetic calcium and lead apatites. Aust J Chem 53:679–686

    Article  Google Scholar 

  • Kim JY, Dong Z, White TJ (2005) Model apatite systems for the stabilization of toxic metals: II, Cation and metalloid substitutions in chlorapatites. J Am Ceram Soc 88:1253–1260

    Article  Google Scholar 

  • Klee WE (1970) The vibrational spectra of the phosphate ions in fluorapatite. Zeit Kristallogr 131:95–102

    Article  Google Scholar 

  • Knyazev AV, Chernorukov NG, Bulanov EN (2011) Isomorphism and phase diagram of Pb5(PO4)3F-Pb5(PO4)3Cl system. Thermochim Acta 513:112–118

    Article  Google Scholar 

  • Kreidler ER, Hummel FA (1970) The crystal chemistry of apatite: structure fields of fluor- and chlorapatite. Am Mineral 55:170–184

    Google Scholar 

  • Lang JR, Lueck B, Mortensen JK, Kelly Russell J, Stanley CR, Thompson JFH (1995) Triassic-Jurassic silica-undersaturated and silica-saturated alkalic intrusions in the Cordillera of British Columbia: implications for arc magmatism. Geology 23:451–454

    Article  Google Scholar 

  • Levitt SR, Condrate RA (1970) The vibrational spectra of lead apatites. Am Mineral 55:1562–1575

    Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Mineral 93:1581–1584

    Article  Google Scholar 

  • Liu X, He Q, Wang H, Fleet ME, Hu X (2010) Thermal expansion of kyanite at ambient pressure: an X-ray powder diffraction study up to 1000°C. Geosci Front 1:91–97

    Article  Google Scholar 

  • Liu X, Fleet ME, Shieh SR, He Q (2011a) Synthetic lead bromapatite: x-ray structure at ambient pressure and compressibility up to about 20 GPa. Phys Chem Mineral 38:397–406

    Article  Google Scholar 

  • Liu X, Liu W, He Q, Deng L, Wang H, He D, Li B (2011b) Isotropic thermal expansivity and anisotropic compressibility of ReB2. Chin Phys Lett 28:036401

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Zhang L, He Q (2011c) Equation of state of carbonated hydroxylapatite at ambient temperature: significance of carbonate. Am Mineral 96:74–80

    Article  Google Scholar 

  • Ma QY, Traina SJ, Logan TJ, Ryan JA (1993) In situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810

    Article  Google Scholar 

  • Matsukage KN, Ono S, Kawamoto T, Kikegawa T (2004) The compressibility of a natural apatite. Phys Chem Mineral 31:580–584

    Article  Google Scholar 

  • Mercier PHJ, Dong Z, Baikie T, Le Page Y, White TJ, Whitfield PS, Mitchel LD (2007) Ab initio constrained crystal-chemical Rietveld refinement of Ca10(V x P1-x O4)6F2 apatites. Acta Cryst B63:37–48

    Google Scholar 

  • Merker L, Wondratschek H (1959) Bleiverbindungen mit Apatitstruktur, insbesondere Blei-Jod-und Blei-Brom-Apatite. Z Anorg Allg Chem 300:41–50

    Article  Google Scholar 

  • Miyake M, Ishigaki K, Suzuki T (1986) Structure refinements of Pb2+ ion-exchanged apatites by X-ray powder pattern-fitting. J Solid State Chem 61:230–235

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Chantilly, pp 13–49

    Google Scholar 

  • Podsiadlo H (1990) Polymorphic transitions in the binary system lead fluorapatite [Pb10(PO4)6Cl2]–calcium fluorapatite [Ca10(PO4)6Cl2]. J Therm Anal 36:569–575

    Article  Google Scholar 

  • Popović L, de Waal D, Boeyens JCA (2005) Correlation between Raman wavenumbers and P-O bond lengths in crystalline inorganic phosphates. J Raman Spectrosc 36:2–11

    Article  Google Scholar 

  • Ruszala F, Kostiner E (1975) Preparation and characterization of single crystals in the apatite system Ca10(PO4)6(Cl, OH)2. J Crystal Growth 30:93–95

    Article  Google Scholar 

  • Sha MC, Li Z, Brad RC (1994) Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. J Appl Phys 75:7784–7787

    Article  Google Scholar 

  • Suzuki T, Ishigaki K, Miyake M (1984) Synthetic hydroxyapatites as inorganic cation exchangers. J Chem Soc Faraday Trans I 80:3157–3165

    Article  Google Scholar 

  • Tonegawa T, Ikoma T, Suetsugu Y, Igawa N, Matsushita Y, Yoshioka T, Hanagata N, Tanaka J (2010) Thermal expansion of type A carbonate apatite. Mater Sci Eng B 173:171–175

    Article  Google Scholar 

  • Zhang M, Maddrell ER, Abraitis PK, Salje EKH (2007) Impact of leach on lead vanado-iodoapatite [Pb5(VO4)3I]: an infrared and Raman spectroscopic study. Mater Sci Eng B 137:149–155

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers and Professor M. Matsui who provided critical comments on the manuscript. We thank the National Natural Science Foundation of China (Grant 40872033) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2708 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Liu, X., Hu, X. et al. Solid solution between lead fluorapatite and lead fluorvanadate apatite: mixing behavior, Raman feature and thermal expansivity. Phys Chem Minerals 38, 741–752 (2011). https://doi.org/10.1007/s00269-011-0447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0447-y

Keywords

Navigation