Skip to main content

Advertisement

Log in

Raman spectra of bixbyite, Mn2O3, up to 40 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The Raman spectra of bixbyite, Mn2O3, were measured up to 40 GPa at room temperature. Mn2O3 undergoes a phase transition from the C-type rare earth structure to the CaIrO3-type (post-perovskite) structure at 16–25 GPa. The transition pressure measured in Raman spectroscopy is significantly lower than the pressure reported previously by an X-ray diffraction study. This could be due to the greater polarizability in the CaIrO3-type structure, consistent with high-pressure observation on the CaIrO3 type in MgGeO3, although it is still possible that experimental differences may cause the discrepancy. Unlike the change at the perovskite to CaIrO3-type transition, the spectroscopic Grüneisen parameter does not decrease at the C-type to CaIrO3-type transition. The spectroscopic Grüneisen parameter of the low-pressure phase (C type) is significantly lower than thermodynamic Grüneisen parameter, suggesting significant magnetic contributions to the thermodynamic property of this material. Our Raman measurements on CaIrO3-type Mn2O3 contribute to building systematic knowledge about this structure, which has emerged as one of the common structures found in geophysically important materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, Oxford

    Google Scholar 

  • Buciuman F, Patcas F, Craciun R, Zahn DRT (1999) Vibrational spectroscopy of bulk ad supported manganese oxides. Phys Chem Chem Phys 1:185–190

    Article  Google Scholar 

  • Caracas R, Cohen RE (2006) Theoretical determination of the Raman spectra of MgSiO3 perovskite and post-perovskite at high pressure. Geophys Res Lett 33:L12S05

    Article  Google Scholar 

  • Catalli K, Shim SH, Prakapenka V (2009) Thickness and Clapeyron slope of the postperovskite transition. Nature 462:782–785

    Article  Google Scholar 

  • Chopelas A (1990) Thermal properties of forsterite at mantle pressures derived from vibrational spectroscopy. Phys Chem Mineral 17:149–156

    Google Scholar 

  • Chopelas A (1996) Thermal expansivity of lower mantle phases MgO and MgSiO3 perovskite at high pressure derived from vibrational spectroscopy. Phys Earth Planet Inter 98:3–15

    Article  Google Scholar 

  • Chopelas A, Boehler R, Ko T (1994) Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: Implications for Mg2SiO4 phase equilibrium. Phys Chem Mineral 21:351–359

    Article  Google Scholar 

  • Duan W, Paiva G, Wentzcovitch RM, Fazzio A (1998) Optical transitions in ruby across the corundum to Rh2O3 (II) phase transition. Phys Rev Lett 81:3267–3270

    Article  Google Scholar 

  • Fadini A, Schnepel FM (1989) Vibrational spectroscopy: methods and applications. Halsted Press, Chichester

    Google Scholar 

  • Funamori N, Jeanloz R (1997) High-pressure transformation of Al2O3. Science 278:1109–1111

    Article  Google Scholar 

  • Geller S (1971) Structures of α-Mn2O3, (Mn0.98Fe0.017)2O3 and relation to magnetic ordering. Acta Crystallogr B 27:821–828

    Article  Google Scholar 

  • Gillet P, Hemley RJ, McMillan PF (1998) Vibrational properties at high pressures and temperature. In: Hemley RJ (eds) Ultrahigh-pressure mineralogy, Reviews in Mineralogy, vol 37. Mineralogical Society of America, pp 525–590

  • Grant RW, Geller S, Cape JA, Espinosa GP (1968) Magnetic and crystallographic transitions in the α-Mn2O3–Fe2O3 systems. Phys Rev 175:686–695

    Article  Google Scholar 

  • Haines J, Léger JM, Hoyau S (1995) Second-order rutile-type to CaCl2-type phase transition in β-MnO2 at high pressure. J Phys Chem Solid 56:965–973

    Article  Google Scholar 

  • Hofmeister AM, Mao HK (2002) Redefinition of the mode Grüneisen parameter for polyatomic substances and thermodynamic implications. P Natl Acad Sci 99:559–564

    Article  Google Scholar 

  • Hustoft J, Shim SH, Kubo A, Nishiyama N (2008) Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa. Am Mineral 93:1654–1658

    Article  Google Scholar 

  • Kapteijin F, van Langeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE (1994) Alumina-supported manganese oxide catalysts. I. characterization: effect of precursor and loading. J Catal 150:94–104

    Article  Google Scholar 

  • Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals: 5. applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties. Rev Geophys Space Phys 20:827–849

    Article  Google Scholar 

  • Lin JF, Degtyareva O, Prewitt CT, Dera P, Sata N, Gregoryanz E, Mao HK, Hemley RJ (2004) Crystal structure of a high-pressure/high-temperature phase of alumina by in situ x-ray diffraction. Nat Mater 3:389–393

    Article  Google Scholar 

  • Liu X, Xu S, Kato K, Moritomo Y (2002) Pressure-induced phase transition in Mn3O4 as investigated by Raman spectroscopy. J Phys Soc Jpn 71

  • Lu R, Hofmeister AM (1994) Thermodynamic properties of ferromagnesium silicate perovskites from vibrational spectroscopy. J Geophys Res 99:11795–11804

    Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430:445–448

    Article  Google Scholar 

  • Oganov AR, Ono S (2005) The high-pressure phase of alumina and implications for Earth’s D″ layer. P Natl Acad Sci 102:10828–10831

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2004) High-pressure phase transition of hematite, Fe2O3. J Phys Chem Solid 65:1527–1530

    Article  Google Scholar 

  • Piermarini GJ, Glock S, Barnett JD, Forman RA (1975) Calibration of the pressure dependence of the r 1 ruby fluorescence line to 195 kbar. J Appl Phys 46:2774–2780

    Article  Google Scholar 

  • Prewitt CT, Shannon RD, Rogers DB, Sleight AW (1969) The C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure. Inorg Chem 8:1985–1993

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1985) Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite). J Chem Thermodyn 17:165–181

    Article  Google Scholar 

  • Santillán J, Shim SH, Shen G, Prakapenka VB (2006) High-pressure phase transition in Mn2O3—application for the crystal structure and preferred orientation of the CaIrO3 type. Geophys Res Lett 33:L15307

    Article  Google Scholar 

  • Sata N, Shen G, Rivers ML, Sutton SR (2002) Pressure-volume equation of state of the high-pressure B2 phase of NaCl. Phys Rev B 65:104–114

    Article  Google Scholar 

  • Shieh SR, Duffy TS, Kubo A, Shen G, Prakapenka VB, Sata N, Hirose K, Ohishi Y (2006) Equation of state of the post-perovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene. P Natl Acad Sci 103:3039–3043

    Article  Google Scholar 

  • Shim SH, Duffy TS (2002) Raman spectra of Fe2O3 to 62 GPa: implications for thermodynamics and phase transformation. Am Mineral 87:318–326

    Google Scholar 

  • Shim SH, Duffy TS, Jeanloz R, Shen G (2004a) Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys Res Lett 31:L10603

    Article  Google Scholar 

  • Shim SH, Duffy TS, Jeanloz R, Yoo CS, Iota V (2004b) Raman spectroscopy and x-ray diffraction of phase transitions in Cr2O3 to 61 GPa. Phys Rev B 69:144107

    Article  Google Scholar 

  • Shim SH, Kubo A, Duffy TS (2007) Raman spectroscopy of perovskite and post-perovskite phases of MgGeO3 to 123 GPa. Earth Planet Sc Lett 260:166–178

    Article  Google Scholar 

  • Shim SH, Catalli K, Hustoft J, Kubo A, Prakapenka VB, Caldwell WA, Kunz M (2008) Crystal structure and thermoelastic properties of (Mg0.91Fe0.09)SiO3 postperovskite up to 135 GPa and 2700 K. P Natl Acad Sci 105:7382–7386

    Article  Google Scholar 

  • Shim SH, Bengtson A, Morgan D, Sturhahn W, Catalli K, Zhao J, Lerche M, Prakapenka VB (2009) Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. P Natl Acad Sci 106:5508–5512

    Article  Google Scholar 

  • Wallace DC (1972) Thermodynamics of crystals. Wiley, New York

    Google Scholar 

  • Wentzcovitch RM, Tsuchiya T, Tsuchiya J (2006) MgSiO3 postperovskite at D″ conditions. P Natl Acad Sci 103:543–546

    Article  Google Scholar 

  • White WB, Keramidas VG (1972) Vibrational spectra of oxides with the C-type rare earth oxide structures. Spectrochim Acta 28A:501–509

    Google Scholar 

  • Williams Q, Jeanloz R, McMillan P (1987) Vibrational-spectrum of MgSiO3 perovskite—zero-pressure Raman and midinfrared spectra to 27 GPa. J Geophys Res 92:8116–8128

    Article  Google Scholar 

  • Yamanaka T, Nagai T, Okada T, Fukuda T (2005) Structure changes of Mn2O3 under high pressure and pressure-induced transition. Z Kristallogr 220:938–945

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their helpful comments. Construction of the laser Raman system at MIT was supported by NSF (EAR0337156). Raman measurements were supported by NSF for SHS and DL (EAR0337005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-H. Shim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, SH., LaBounty, D. & Duffy, T.S. Raman spectra of bixbyite, Mn2O3, up to 40 GPa. Phys Chem Minerals 38, 685–691 (2011). https://doi.org/10.1007/s00269-011-0441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0441-4

Keywords

Navigation