Skip to main content
Log in

Insights into cation exchange selectivity of a natural clinoptilolite by means of dielectric relaxation spectroscopy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Purified natural clinoptilolite from the Tasajeras deposit, Cuba, and some of its metal exchanged forms are studied, at the dehydrated state, by means of dielectric relaxation spectroscopy (DRS) using two different modus operandi: complex impedance spectroscopy and dielectric dynamic thermal analysis. Data analysis yields the determination of the extra-framework cation (EFC) population into the various possible crystallographic sites of the zeolitic framework as well as of the activation energy characterizing the localized hopping mechanism of EFC. First, it is shown that the DRS responses obtained here match well with the previous reported data, which were previously localized EFCs in positions close to M1 and M2 sites when the clinoptilolite is modified to almost homoionic form. From this outcome, it can be concluded that all EFCs are in the same crystallographic situation regarding solvation or, in other terms, that no steric effect can be taken into account to explain cationic selectivity. Second, based on the assumption that the activation energy for EFC hopping is directly connected to the EFC/framework interaction and on simple thermodynamics consideration, we show this interaction does not govern the EFC exchange reaction. So, it is emphasized that EFC/H2O interaction is the key factor for cation exchange selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberti A, Vessalini G (1983) The thermal behaviour of heulandites: A structural study of the dehydration of Nadap heulandite. Tschermaks Mineral Petrog Mitt 31:259–270

    Article  Google Scholar 

  • Ambruster T (1993) Dehydration mechanism of clinoptilolite and heulandite: single crystral X-ray study of Na poor, Ca-, K-, Mg- rich clinoptilolite. Am Mineral 78:260–264

    Google Scholar 

  • Armbruster T, Gunter ME (1991) Stepwise dehydration of a heulandite-clinoptilolite from Succor Creek, Oregon, USA: a single crystal X-ray study at 100 K. Am Mineral 76:1872–1883

    Google Scholar 

  • Barrer RM, Klinowski J (1972) Influence of framework charge density on ion-exchange properties of zeolites. J Chem Soc Faraday Trans I 68:1956–1963

    Article  Google Scholar 

  • Barrer RM, Davies JA, Rees LVC (1969) Comparison of ion exchange properties of zeolites X and Y. J Inorg Nucl Chem 31:2599–2609

    Article  Google Scholar 

  • Barsoukov E, MacDonald JR (2005) Impedance spectroscopy: theory, experiment and applications. Wiley, NY

    Book  Google Scholar 

  • Carru JC, Delafosse D, Kermarec M (1989) Study of large frequency band dielectric relaxation in X, Y and M type zeolites containing protons. J Chim Phys 86:263–275

    Google Scholar 

  • Delgado A, Rodríguez-Fuentes G, Ruiz-Salvador AR, Berazain-Iturralde A (1996) Dielectric Response in Natural Clinoptilolite. IEEE Int Symp Elec Ins 866–869

  • Devautour S, Vanderschueren J, Giuntini JC, Henn F, Zanchetta JV, Ginoux JL (1998) Na+/Mordenite interaction energy determined by thermally stimulated depolarization current. J Phys Chem B102:3749–3753

    Google Scholar 

  • Devautour-Vinot S, Giuntini JC, Henn F (2004) Isothermal and non-isothermal dielectric relaxation spectroscopy for probing cation/network interaction energies in ionic solids. IEEE Trans Dielectr Electr Insulators 11:320–327

    Article  Google Scholar 

  • Fawcett WR (2001) Thermodynamic parameters for the solvation of monatomic ions in water. J Phys Chem B 103:11181–11185

    Article  Google Scholar 

  • Haidar AR, Jonscher AK (1986) The dielectric properties of zeolites in variable temperature and humidity. J Chem Soc Faraday Trans 1(82):3535–3551

    Google Scholar 

  • Henn F, Devautour S, Maati L, Giuntini JC, Zanchetta JV, Schafer H, Vanderschueren J (2000) Dielectric relaxation in ionic solids: experimental evidences. Solid State Ionics 136–137:1335–1343

    Article  Google Scholar 

  • Henn F, Devautour S, Giuntini JC, Maurin G (2004) Alkali bonding energy and activation energy for dc conductivity in nanoporous oxides. J Phys Chem B 108:13936–13943

    Article  Google Scholar 

  • Johnson M, O’Connor D, Barnes P, Catlow C, Owens S, Sankar G, Bell R, Teat SJ, Stephenson R (2003) Cation exchange dehydration and calcination in clinoptilolite: in situ X-ray diffraction and computer modeling. J Phys Chem B 107:942–951

    Article  Google Scholar 

  • Kalogeras JM, Vassilikou-Dova A (1996) Molecular mobility in microporous architectures: conductivity and dielectric relaxation phenomena in natural and synthetic zeolites. Cryst Res Technol 31:693–726

    Article  Google Scholar 

  • Koyama K, Takeushi Y (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Z Kristallogr 145:216–239

    Article  Google Scholar 

  • Moraetis D, Christidis GE, Perdijatis V (2008) Ion exchange equilibrium and structural changes in clinoptilolite irradiated with β- and γ-radiation. Part II: divalent cations. Eur J Mineral 20:603–620

    Article  Google Scholar 

  • Nicolas A, Devautour-Vinot S, Maurin G, Giuntini JC, Henn F (2007) Cation dynamics upon adsorption of methanol in NaY faujasite type zeolites: a dielectric relaxation spectroscopy investigation. J Phys Chem C 111–12:4722–4726

    Article  Google Scholar 

  • Nicolas A, Devautour-Vinot S, Giuntini JC, Maurin G, Henn F (2008) Location and de-trapping energy of sodium ions in dehydrated X and Y faujasites determined by dielectric relaxation spectroscopy. Microporous Mesoporous Mater 109:413–419

    Article  Google Scholar 

  • Rodríguez-Fuentes G (1987) Physico-chemical properties and industrial applications of natural clinoptilolite, dissertation. Centro Nacional Investigaciones Científicas, Cuba

  • Rodríguez-Fuentes G, Ruiz-Salvador AR, Mir M, Picazo O, Quintana G, Delgado M (1998) Thermal and cation influence on ir vibrations of modified natural clinoptilolite. Microporous Mesoporous Mater 20:269–281

    Article  Google Scholar 

  • Rodríguez-Fuentes G, de Ménorval LC, Reguera E, Chávez F (2008) Solid state multinuclear NMR study of iron species in natural and modified clinoptilolite from Tasajera deposit (Cuba). Microporous Mesoporous Mater 111:577–590

    Article  Google Scholar 

  • Ruiz-Salvador AR, Lewis W, Rubayo-Soneira J, Rodríguez-Fuentes G, René L, Catlow RA (1998) Aluminum distribution in low Si/Al zeolites: dehydrated Na-clinoptilolite. J Phys Chem B 102:8417–8425

    Article  Google Scholar 

  • Ruiz-Salvador AR, Gómez A, Lewis DW, Rodríguez-Fuentes G, Montero L (1999) Silicon-aluminium distribution in dehydrated calcium heulandite. Phys Chem Chem Phys 1:1679–1685

    Article  Google Scholar 

  • Ruiz-Salvador AR, Gómez A, Lewis DW, Catlow RA, Rodríguez-Albelo LM, Montero L, Rodríguez-Fuentes G (2000) Clinoptilolite-heulandite polymorphism: structural features from computer simulation. Phys Chem Chem Phys 2:1803–1814

    Article  Google Scholar 

  • Schäfer H, Sternin E (1997) Inverse ill-posed problems in experimental data analysis in physics. La Physique au Canada March-April, pp 77–85

  • Schäfer H, Sternin E, Stannarius R, Arndt M, Kremer F (1996) Novel approach to the analysis of broadband dielectric spectra. Phys Rev Lett 76:2177–2180

    Article  Google Scholar 

  • Woods R, Gunter M (2001) Na- and Cs-exchange in a clinoptilolite-rich rock: Analysis of the outgoing cations in solution. Am Mineral 86:424–430

    Google Scholar 

Download references

Acknowledgments

The authors thank the Universidad de La Habana for the support to this study. We thank Dr. A.R. Ruiz-Salvador.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Rodríguez-Fuentes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Fuentes, G., Devautour-Vinot, S., Diaby, S. et al. Insights into cation exchange selectivity of a natural clinoptilolite by means of dielectric relaxation spectroscopy. Phys Chem Minerals 38, 613–621 (2011). https://doi.org/10.1007/s00269-011-0433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0433-4

Keywords

Navigation