Skip to main content

Advertisement

Log in

PVT equation of state of CaAl4Si2O11 CAS phase

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermoelastic parameters of the CAS phase (CaAl4Si2O11) were examined by in situ high-pressure (up to 23.7 GPa) and high-temperature (up to 2,100 K) synchrotron X-ray diffraction, using a Kawai-type multi-anvil press. PV data at room temperature fitted to a third-order Birch–Murnaghan equation of state (BM EOS) yielded: V 0,300 = 324.2 ± 0.2 Å3 and K 0,300 = 164 ± 6 GPa for K′ 0,300 = 6.2 ± 0.8. With K′ 0,300 fixed to 4.0, we obtained: V 0,300 = 324.0 ± 0.1 Å3 and K 0,300 = 180 ± 1 GPa. Fitting our PVT data with a modified high-temperature BM EOS, we obtained: V 0,300 = 324.2 ± 0.1 Å3, K 0,300 = 171 ± 5 GPa, K′ 0,300 = 5.1 ± 0.6 (∂K 0,T /T) P  = −0.023 ± 0.006 GPa K−1, and α0,T  = 3.09 ± 0.25 × 10−5 K−1. Using the equation of state parameters of the CAS phase determined in the present study, we calculated a density profile of a hypothetical continental crust that would contain ~10 vol% of CaAl4Si2O11. Because of the higher density compared with the coexisting minerals, the CAS phase is expected to be a plunging agent for continental crust subducted in the transition zone. On the other hand, because of the lower density compared with lower mantle minerals, the CAS phase is expected to remain buoyant in the lowermost part of the transition zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaogi M, Haraguchi M, Yaguchi M, Kojitani H (2009) High-pressure phase relations and thermodynamic properties of CaAl4Si2O11 CAS phase. Phys Earth Planet Inter 173:1–6

    Article  Google Scholar 

  • Angel RJ, Ross NL, Seifert F, Fliervoet TF (1996) Structural characterization of pentacoordinate silicon in a calcium silicate. Nature 384:441–444

    Article  Google Scholar 

  • Beck P, Gillet P, Gautron L, Daniel I, El Goresy A (2004) A new natural high-pressure (Na, Ca)-hexaluminosilicate (CaxNa1–x)Al3+xSi3-xO11 in shocked Martian meteorites. Earth Planet Sci Lett 219:1–12

    Article  Google Scholar 

  • Brown JM, Shankland TJ (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys J R Astr Soc 66:579–596

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography, A handbook of physical constants. AGU Reference Shelf 2: 29–44

  • Gautron L, Kesson SE, Hibberson WO (1996) Phase relations for CaAl2Si2O8 (anorthite composition) in the system CaO-Al2O3-SiO2 at 14 GPa. Phys Earth Planet Inter 97:71–81

    Article  Google Scholar 

  • Gautron L, Angel RJ, Miletich R (1999) Structural characterisation of the high-pressure phase CaAl4Si2O11. Phys Chem Miner 27:47–51

    Article  Google Scholar 

  • Gautron L, Gréaux S, Andrault D, Bolfan-Casanova N, Guignot N, Bouhifd MA (2006) Uranium in the Earth’s lower mantle. Geophys Res Lett 33. doi:10.1029/2006GL027508

  • Gréaux S, Gautron L, Andrault D, Bolfan-Casanova N, Guignot N, Bouhifd MA (2009) Experimental high pressure and high temperature study of the incorporation of uranium in Al-rich CaSiO3 perovskite. Phys Earth Planet Inter 174:254–263

    Article  Google Scholar 

  • Gréaux S, Kono Y, Nishiyama N, Kunimoto T, Wada K, Irifune T (2011a) P-V-T equation of state of Ca3Al2Si3O12 grossular garnet. Phys Chem Miner 38:85–94

    Article  Google Scholar 

  • Gréaux S, Nishiyama N, Kono Y, Gautron L, Ohfuji H, Kunimoto T, Menguy N, Irifune T (2011b) Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone. Phys Earth Planet Inter. doi:10.1016/j.pepi.2011.02.001

  • Hama J, Suito K (2001) Thermoelastic model of minerals: application to Al2O3. Phys Chem Miner 28:258–267

    Article  Google Scholar 

  • Hirose K, Fei Y (2002) Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim Cosmochim Acta 66:2099–2108

    Article  Google Scholar 

  • Holmes NC, Moriarty JA, Gathers GR, Nellis WJ (1989) The equation of state of platinum to 660 GPa (6.6 Mbar). J Appl Phys 66:2962–2967

    Article  Google Scholar 

  • Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

    Article  Google Scholar 

  • Ishibashi K, Hirose K, Sata N, Ohishi Y (2008) Dissociation of CAS phase in the uppermost lower mantle. Phys Chem Miner 35:197–200

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) GSAS general structure analysis system. Operation manual. Los Alamos Nat Lab LAUR 86–748

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  • Nishihara Y, Nakayama K, Takahashi E, Iguchi T, Funakoshi KI (2005) P-V-T equation of state of stishovite to the mantle transition zone conditions. Phys Chem Miner 31:660–670

    Article  Google Scholar 

  • Nishiyama N, Rapp RP, Irifune T, Sanehira T, Yamazaki D, Funakoshi K (2005) Stability and P-V-T equation of state of KAlSi3O8-hollandite determined by in situ X-ray observations and implications for dynamics of subducted continental crust material. Phys Chem Miner 32:627–637

    Article  Google Scholar 

  • Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 190:57–63

    Article  Google Scholar 

  • Ono S, Iizuka T, Kikegawa T (2005) Compressibility of the calcium aluminosilicate, CAS, phase to 44 GPa. Phys Earth Planet Inter 150:331–338

    Article  Google Scholar 

  • Osborn EF, Muan A (1960) The system CaO-Al2O3-SiO2. Plate No. 1 in Phase equilibrium diagrams of oxide systems 219

  • Rapp RP, Irifune T, Shimizu N, Nishiyama N, Norman MD, Inoue T (2008) Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth Planet Sci Lett 271:14–23

    Article  Google Scholar 

  • Rubie DC (1998) Characterising the sample environment in multianvil high-pressure experiments. Phase Transit 68:431–451

    Google Scholar 

  • Saikia A, Frost DJ, Rubie DC (2008) Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science 319:1515–1518

    Google Scholar 

  • Thompson AB (1992) Water in the Earth’s upper mantle. Nature 358:295–302

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Tsuchiya T (2003) First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res B 108:2462

    Article  Google Scholar 

  • Wang W, Takahashi E (1999) Subsolidus and melting experiments of a K-rich basaltic composition to 27 GPa: Implication for the behavior of potassium in the mantle. Am Miner 84:357–361

    Google Scholar 

  • Wang Y, Weidner DJ, Guyot F (1996) Thermal equation of state of CaSiO3 perovskite. J Geophys Res B 101:661–672

    Article  Google Scholar 

  • Wang Y, Weidner DJ, Zhang J, Gwanmesia GD, Liebermann RC (1998) Thermal equation of state of garnets along the pyrope-majorite join. Phys Earth Planet Inter 105:59–71

    Article  Google Scholar 

  • Xue X, Zhai S, Kanzaki M (2009) Si-Al distribution in high-pressure CaAl4Si2O11 phase: A 29Si and 27Al NMR study. Am Miner 94:1739–1742

    Article  Google Scholar 

  • Yang H, Downs RT, Finger LW, Hazen RM, Prewitt CT (1997) Compressibility and crystal structure of kyanite, Al2SiO5, at high pressure. Am Miner 82:467–474

    Google Scholar 

  • Zhai S, Ito E (2008) Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys Earth Planet Inter 167:161–167

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank K. Funakoshi, Y. Higo, and T. Kunimoto for their helpful assistance in the experiments at BL04B1, at the synchrotron radiation facility, SPring-8 (Project 2010A1326). We are grateful for assistance of A. Yamada and H. Ohfuji in the preparation and analyses of starting materials. We acknowledge D. Gatta and M. Akaogi for valuable comments, which improved the manuscript, and C. McCammon for its editorial handling. This work was supported by the Global-COE program “Deep Earth Mineralogy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steeve Gréaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gréaux, S., Nishiyama, N., Kono, Y. et al. PVT equation of state of CaAl4Si2O11 CAS phase. Phys Chem Minerals 38, 581–590 (2011). https://doi.org/10.1007/s00269-011-0430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0430-7

Keywords

Navigation