Skip to main content

Polytype and polymorph identification of finely divided aluminous dioctahedral mica individual crystals with SAED. Kinematical and dynamical electron diffraction

Abstract

This work investigates the potential of selected-area electron diffraction (SAED) for the polytype and polymorph identification of finely divided K-bearing aluminous dioctahedral mica. Individual mica crystals may indeed differ by their layer-stacking sequence and by the inner structure of their octahedral sheets (polytypic and polymorphic variants, respectively). This diversity of natural mica is commonly considered to be responsible for their morphological variety. The present article thus analyzes the intensity distribution between hk0 beams as a function of the crystal structure and thickness. The comparison of ED calculations with experimental diffraction data shows that predicted dynamical effects are not observed for finely divided dioctahedral mica. The influence of different structure defects on calculated intensities is analyzed, and their widespread occurrence in natural mica is hypothesized to be responsible for the limitation of dynamical diffraction effects. SAED may thus be used to identify the structure of individual dioctahedral mica crystals using the kinematical approximation to simulate and qualitatively interpret the observed intensities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Electron Microscopy Suite, Java version (JEMS). http://cimewww.epfl.ch/people/stadelmann/jemswebsite/jems.html.

  2. 2.

    MacTempas package from Total Resolution LLC. http://www.totalresolution.com/.

References

  1. Amisano-Canesi A, Chiari G, Ferraris G, Ivaldi G, Soboleva SV (1994) Muscovite-3T and phengite-3T–Crystal-structure and conditions of formation. Eur J Mineral 6(4):489–496

    Google Scholar 

  2. Amouric M, Baronnet A (1983) Effect of early nucleation conditions on synthetic muscovite polytypism as seen by high-resolution transmission electron microscopy. Phys Chem Miner 9(3–4):146–159

    Article  Google Scholar 

  3. Amouric M, Baronnet A, Finck C (1978) Polytypisme et désordre dans les micas dioctaédriques synthétiques: étude par imagerie de réseau. Mater Res Bull 13(6):627–634

    Article  Google Scholar 

  4. Amouric M, Mercuriot G, Baronnet A (1981) On computed and observed HRTEM images of perfect mica polytypes. B Mineral 104(2–3):298–313

    Google Scholar 

  5. Bailey SW (1984) Classification and structure of the micas. In: Bailey SW (ed) Micas. Mineralogical Society of America, Chelsea, vol 13, pp 1–12

  6. Bailey SW (1988) Hydrous phyllosilicates (exclusive of micas), vol 19. Reviews in Mineralogy. Mineralogical Society of America, Chelsea

    Google Scholar 

  7. Beermann T, Brockamp O (2005) Structure and analysis of montmorillonite crystallites by convergent-beam electron diffraction. Clay Miner 40(1):1–13

    Article  Google Scholar 

  8. Blin A (2007) Illites: liens entre morphologie et structure–Influence sur la thermodynamique de la nucléation et de la croissance. Dissertation, University of Poitiers, France

  9. Cowley JM (1992) Electron diffraction techniques. In: IUo (ed) Crystallography. IUCr Monographs on crystallography, vol 3. Oxford University Press, Oxford

  10. Cowley JM, Moodie AF (1957) Fourier images: I–The point source. Proc Physic Soc B70(5):486–496

    Google Scholar 

  11. Drits VA (1987) Electron diffraction and high-resolution electron microscopy of mineral structures. Spring, New-York

    Google Scholar 

  12. Drits VA, Sakharov BA (2004) Potential problems in the interpretation of powder X-ray diffraction patterns from fine-dispersed 2M1 and 3T dioctahedral micas. Eur J Mineral 16(1):99–110

    Article  Google Scholar 

  13. Drits VA, Goncharov YI, Aleksandrova VA, Khadzhi VE, Dmitrik AL (1975) New type of strip silicate. Sov Phys Crystallogr 19:737–741 (translated from Kristallografiya, 1974, 19:1186–1193)

    Google Scholar 

  14. Drits VA, Plançon A, Sakharov BA, Besson G, Tsipursky SI, Tchoubar C (1984a) Diffraction effects calculated for structural models of K-saturated montmorillonite containing different types of defects. Clay Miner 19(4):541–562

    Article  Google Scholar 

  15. Drits VA, Tsipursky SI, Plançon A (1984b) Application of the method for the calculation of intensity distribution to electron diffraction structural analysis. Izvestya Akademii Nauk SSSR, Seriya Physic 2:1708–1713 (in Russian)

    Google Scholar 

  16. Drits VA, Weber F, Salyn AL, Tsipursky SI (1993) X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits of Canada. Clays Clay Miner 41(3):389–398

    Article  Google Scholar 

  17. Drits VA, Lindgreen H, Salyn AL, Ylagan RF, McCarty DK (1998) Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction. Am Mineral 83(11–12 (1)):1188–1198

    Google Scholar 

  18. Drits VA, McCarty DK, Zviagina BB (2006) Crystal-chemical factors responsible for the distribution of octahedral cations over trans- and cis-sites in dioctahedral 2:1 layer silicates. Clays Clay Miner 54(2):131–152

    Article  Google Scholar 

  19. Drits VA, Zviagina BB, McCarty DK, Salyn AL (2010) Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite. Am Mineral 95(2–3):348–361

    Article  Google Scholar 

  20. Durovic S (1992) Layer stacking in general polytypic structures. In: Wilson AJC (ed) International tables for crystallography–C Mathematical, physical and chemical tables, vol C. Kluwer Academic Publisher, Dordrecht, pp 667–680

    Google Scholar 

  21. Emmerich K, Kahr G (2001) The cis- and trans-vacant variety of a montmorillonite: an attempt to create a model smectite. Appl Clay Sci 20(3):119–127

    Article  Google Scholar 

  22. Emmerich K, Madsen FT, Kahr G (1999) Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites. Clays Clay Miner 47(5):591–604

    Article  Google Scholar 

  23. Ewald PP (1917) On the explanation of crystal optics. Annalen Der Physik 54(23):519–556

    Google Scholar 

  24. Gemmi M, Nicolopoulos S (2007) Structure solution with three-dimensional sets of precessed electron diffraction intensities. Ultramicroscopy 107:403–494

    Article  Google Scholar 

  25. Guthrie GD, Reynolds RC (1998) A coherent TEM- and XRD-description of mixed-layer illite/smectite. Can Mineral 36(6):1421–1434

    Google Scholar 

  26. Güven N (1974a) Electron-optical investigations on montmorillonites–I Cheto, Camp-Berteaux and Wyoming montmorillonites. Clays Clay Miner 22(2):155–165

    Article  Google Scholar 

  27. Güven N (1974b) Factors affecting selected area electron diffraction patterns of micas. Clays Clay Miner 22(1):97–106

    Article  Google Scholar 

  28. Humphreys CJ, Bithell EG (1992) Electron diffraction theory. In: Cowley JM (ed) Electron diffraction techniques, vol 3. Oxford University Press, Oxford, pp 75–151

    Google Scholar 

  29. IUCr (1992) International tables for crystallography-C. Mathematical, physical and chemical tables, vol C. International Tables for Crystallography. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  30. Kameda J, Miyawaki R, Drits VA, Kogure T (2007) Polytype and morphological analyses of Gümbelite, a fibrous Mg-rich illite. Clays Clay Miner 55(5):453–466

    Article  Google Scholar 

  31. Kodama H, Gatineau L, Mering J (1971) Analysis of X-ray diffraction line profiles of microcrystalline muscovites. Clays Clay Miner 19(6):405–413

    Article  Google Scholar 

  32. Kogure T (2002a) Identification of polytypic groups in hydrous phyllosilicates using electron backscattering patterns. Am Mineral 87(11–12):1678–1685

    Google Scholar 

  33. Kogure T (2002b) Investigation of micas using advanced transmission electron microscopy. In: Mottana A, Sassi FP, Thompson JB Jr, Guggenhein S (eds) Micas: crystal chemistry and metamorphic petrology, vol 46. Mineralogical Society of America, Washington, pp 281–310

    Google Scholar 

  34. Kogure T, Drits VA (2010) Structural change in celadonite and cis-vacant illite by electron radiation in TEM. Clays Clay Miner 58(4):522–531

    Article  Google Scholar 

  35. Kogure T, Nespolo M (1999) First occurrence of a stacking sequence including (+60°, 180°) rotations in Mg-rich annite. Clays Clay Miner 47(6):784–792

    Article  Google Scholar 

  36. Kogure T, Kameda J, Drits VA (2008) Stacking faults with 180° layer rotation in celadonite, an Fe- and Mg-rich dioctahedral mica. Clays Clay Miner 56(6):612–621

    Article  Google Scholar 

  37. Lanson B, Champion D (1991) The I/S-to-illite reaction in the late stage diagenesis. Am J Sci 291(5):473–506

    Article  Google Scholar 

  38. Lanson B, Beaufort D, Berger G, Baradat J, Lacharpagne J-C (1996) Illitization of diagenetic kaolinite-to-dickite conversion series: late-stage diagenesis of the Lower Permian Rotliegend Sandstone reservoir, offshore of the Netherlands. J Sediment Res 66(3):501–518

    Google Scholar 

  39. Lanson B, Beaufort D, Berger G, Bauer A, Cassagnabere A, Meunier A (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Miner 37(1):1–22

    Article  Google Scholar 

  40. Laverret E, Patrier Mas P, Beaufort D, Kister P, Quirt D, Bruneton P, Clauer N (2006) Mineralogy and geochemistry of the host-rock alterations associated with the Shea Creek unconformity-type uranium deposits (Athabasca Basin, Saskatchewan, Canada). Part 1. Spatial variation of illite properties. Clays Clay Miner 54(2):275–294

    Article  Google Scholar 

  41. Liang JJ, Hawthorne FC, Swainson IP (1998) Triclinic muscovite: X-ray diffraction, neutron diffraction and photo-acoustic FTIR spectroscopy. Can Mineral 36:1017–1027

    Google Scholar 

  42. Meunier A, Velde B (1989) Solid solutions in I/S mixed-layer minerals and illite. Am Mineral 74(9–10):1106–1112

    Google Scholar 

  43. Moeck P, Rouvimov S (2010) Precession electron diffraction and its advantages for structural fingerprinting in the transmission electron microscope. Zeit Krist 225:110–124

    Article  Google Scholar 

  44. Nicolopoulos S, Morniroli J-P, Gemmi M (2007) From powder diffraction to structure resolution of nanocrystals by precession electron diffraction. Zeit Krist Suppl 26:183–188

    Article  Google Scholar 

  45. Patrier P, Beaufort D, Laverret E, Bruneton P (2003) High-grade diagenetic dickite and 2 M(1) illite from the Middle Proterozoic Kombolgie formation (Northern Territory, Australia). Clays Clay Miner 51(1):102–116

    Article  Google Scholar 

  46. Plançon A, Tsipursky SI, Drits VA (1985) Calculation of intensity distribution in the case of oblique texture electron diffraction. J Appl Crystallogr 18:191–196

    Article  Google Scholar 

  47. Srodon J, Elsass F, McHardy WJ, Morgan DJ (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Miner 27:137–158

    Article  Google Scholar 

  48. Tsipursky SI, Drits VA (1977) Effectiveness of the electronic method of intensity measurement in structural investigation by electron diffraction. Izv An SSSR Fiz+ 1:2263–2271 (in Russian)

    Google Scholar 

  49. Vainshtein BK (1956) Structural electronography. (English translation) edn. Akademii Nauk SSSR, Moscow (English translation)

  50. Weiss Z, Wiewiora A (1986) Polytypism of micas. III. X-ray diffraction identification. Clays Clay Miner 34(1):53–68

    Article  Google Scholar 

  51. Zviagina BB, Sakharov BA, Drits VA (2007) X-ray diffraction criteria for the identification of trans- and cis-vacant varieties of dioctahedral micas. Clays Clay Miner 55(5):467–480

    Article  Google Scholar 

  52. Zvyagin BB (1967) Electron diffraction analysis of clay mineral structures (Elektronografiya i strukturanaya kristallografiya glinistykh mineralov (1964)). Plenum, New York

    Google Scholar 

  53. Zvyagin BB, Vrublevskaya ZV, Zhoukhlistov AP, Sidorenko OV, Soboleva SV, Fedotov AF (1979) High-voltage electron diffraction in the study of layer minerals. Nauka Press, Moscow

    Google Scholar 

Download references

Acknowledgments

This work was supported by a NSF grant #EAR0409071 (ACG, and DRV) and a Lavoisier fellowship (French Ministry of Foreign Affairs) to ACG. VAD thanks the Russian Foundation for Basic Research for financial support. Daniel Beaufort (Hydr’Asa, Poitiers—France) and Roar Kilaas (Total Resolution, Berkeley—USA) are thanked for providing the mica samples and for valuable discussions about the MacTempas software, respectively. Alain Baronnet (CINaM, Marseille—France) and Ken Livi (JHU, Baltimore—USA) are thanked for providing TEM access, assistance, and for fruitful discussions. The present version of the article benefited from the constructive comments of three anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anne-Claire Gaillot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 83 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaillot, AC., Drits, V.A., Veblen, D.R. et al. Polytype and polymorph identification of finely divided aluminous dioctahedral mica individual crystals with SAED. Kinematical and dynamical electron diffraction. Phys Chem Minerals 38, 435–448 (2011). https://doi.org/10.1007/s00269-011-0417-4

Download citation

Keywords

  • Electron diffraction
  • Dioctahedral mica
  • Polymorph
  • Polytype
  • Cis-vacant
  • Trans-vacant
  • Illite
  • Muscovite
  • Dynamical diffraction
  • Kinematical approximation