Skip to main content

Advertisement

Log in

High-pressure phase behavior of MnTiO3: decomposition of perovskite into MnO and MnTi2O5

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The phase relations and compression behavior of MnTiO3 perovskite were examined using a laser-heated diamond-anvil cell, X-ray diffraction, and analytical transmission electron microscopy. The results show that MnTiO3 perovskite becomes unstable and decomposes into MnO and orthorhombic MnTi2O5 phases at above 38 GPa and high temperature. This is the first example of ABO3 perovskite decomposing into AO + AB2O5 phases at high pressure. The compression behavior of volume, axes, and the tilting angle of TiO6 octahedron of MnTiO3 perovskite are consistent with those of other A2+B4+O3 perovskites, although no such decomposition was observed in other perovskites. FeTiO3 is also known to decompose into two phases, instead of transforming into the CaIrO3-type post-perovskite phase and we argue that one of the reasons for the peculiar behavior of titanate is the weak covalency of the Ti–O chemical bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75:3494–3500

    Article  Google Scholar 

  • Ballaran TB, Trønnes RG, Frost DJ (2007) Equations of state of CaIrO3 perovskite and post-perovskite phases. Am Mineral 92:1760–1763

    Article  Google Scholar 

  • Brown JM (1999) The NaCl pressure standard. J Appl Phys 86:5801–5808

    Article  Google Scholar 

  • Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207

    Google Scholar 

  • Fei Y, Mao HK (1994) In situ determination of the NiAs Phase of FeO at high pressure and temperature. Science 266:1678–1680

    Article  Google Scholar 

  • Fujino K, Suzuki K, Hamane D, Seto Y, Nagai T, Sata N (2008) High-pressure phase relation of MnSiO3 up to 85 GPa: existence of MnSiO3 perovskite. Am Mineral 93:653–657

    Article  Google Scholar 

  • Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwiss 14:477–485

    Article  Google Scholar 

  • Hirose K, Kawamura K, Ohishi Y, Tateno S, Sata N (2005) Stability and equation of state of MgGeO3 post-perovskite phase. Am Mineral 90:262–265

    Article  Google Scholar 

  • Ko J, Prewitt CT (1988) High-pressure phase transition in MnTiO3 from the ilmenite to the LiNbO3 structure. Phys Chem Minerals 15:355–362

    Article  Google Scholar 

  • Kondo T, Yagi T, Syono Y, Noguchi Y, Atou T, Kikegawa T, Shimomura O (2000) Phase transitions of MnO to 137 GPa. J Appl Phys 87:4153–4159

    Article  Google Scholar 

  • Kung J, Angel RJ, Ross NL (2001) Elasticity of CaSnO3 perovskite. Phys Chem Minerals 28:35–43

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Nishio-Hamane D, Seto Y, Fujino K, Nagai T (2008) Effect of FeAlO3 incorporation into MgSiO3 on the bulk modulus of perovskite. Phys Earth Planet Inter 166:219–225

    Article  Google Scholar 

  • Nishio-Hamane D, Shimizu A, Nakahira R, Niwa K, Sano-Furukawa A, Okada T, Yagi T, Kikegawa T (2009) The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa. Phys Chem Minerals 37:129–136

    Article  Google Scholar 

  • Nishio-Hamane D, Yagi T, Ohshiro M, Niwa K, Okada T, Seto Y (2010) High-pressure phase behavior of FeTiO3: decomposition into (Fe1-x,Ti0.5x)O and FeTi3O7. Phys Rev B (in press)

  • O’keeffe M, Hyde BG, Bovin J-O (1979) Contribution to the crystal chemistry of orthorhombic perovskites: MgSiO3 and NaMgF3. Phys Chem Minerals 4:299–305

    Article  Google Scholar 

  • Ohgushi K, Matsushita Y, Miyajima N, Katsuya Y, Tanaka M, Izumi F, Gotou H, Ueda Y, Yagi T (2008) CaPtO3 as a novel post-perovskite oxide. Phys Chem Minerals 35:189–195

    Article  Google Scholar 

  • Pauling L (1960) The nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  • Ross NL, Angel RJ (1999) Compression of CaTiO3 and CaGeO3 perovskites. Am Mineral 84:277–281

    Google Scholar 

  • Ross NL, Chaplin TD (2003) Compressibility of CaZrO3 perovskite: comparison with Ca-oxide perovskites. J Solid State Chem 172:123–126

    Article  Google Scholar 

  • Ross NL, Hazen RM (1990) High-pressure crystal chemistry of MgSiO3 perovskite. Phys Chem Minerals 17:228–237

    Article  Google Scholar 

  • Ross NL, Ko J, Prewitt CT (1989) A new phase transition in MnTiO3: LiNbO3-perovskite structure. Phys Chem Minerals 16:621–629

    Google Scholar 

  • Runge CE, Kubo A, Kiefer B, Meng Y, Prakapenka VB, Shen G, Cava RJ, Duffy TS (2006) Equation of state of MgGeO3 perovskite to 65 GPa: comparison with the post-perovskite phase. Phys Chem Minerals 33:699–709

    Article  Google Scholar 

  • Sasaki S, Fujino K, Takeuchi Y (1980) On the estimation of atomic charges by the X-ray method for some oxides and silicates. Acta Crystallogr A 36:904–915

    Article  Google Scholar 

  • Sata N, Shen G, Rivers ML, Sutton SR (2002) Pressure–volume equation of state of the high-pressure B2 phase of NaCl. Phys Rev B 65:104–114

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Cryst B 25:925–946

    Article  Google Scholar 

  • Shim S-H, Duffy TS, Shen G (2000) The equation of state of CaSiO3 perovskite to 108 GPa at 300 K. Phys Earth Planet Inter 120:327–338

    Article  Google Scholar 

  • Syono Y, Akimoto S, Ishikawa Y, Endoh Y (1969) A new high pressure phase of MnTiO3 and its magnetic property. J Phys Chem Solids 30:1665–1672

    Article  Google Scholar 

  • Takei H, Kitamura K (1979) Growth of FeTiO3 (ilmenite) crystals by the floating-zone method. J Cryst Growth 44:629–631

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2004) Stability of post-perovskite phase in analogue materials to MgSiO3. Eos Trans AGU 85(47) (Fall meeting Suppl Abstract MR23A-0183)

  • Tateno S, Hirose K, Sata N, Ohishi Y (2010) Structural distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low-pressure analogue to MgSiO3. Phys Earth Planet Inter 181:54–59

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2006) High-pressure behavior of MnGeO3 and CdGeO3 perovskite phase transition. Phys Chem Minerals 32:721–725

    Article  Google Scholar 

  • Vanpeteghem CB, Zhao J, Angel RJ, Ross NL, Bolfan-Casanova N (2006) Crystal structure and equation of state of MgSiO3 perovskite. Geophys Res Lett 33:L03306

    Article  Google Scholar 

  • Wu X, Steinle-Neumann G, Narygina O, Kantor I, McCammon C, Prakapenka V, Swamy V, Dubrovinsky L (2009) High-pressure behavior of perovskite: FeTiO3 dissociation into (Fe1-δ; Tiδ)O and Fe1+δTi2-δO5. Phys Rev Lett 103:065503

    Article  Google Scholar 

  • Xia X, Weidner DJ, Zhao H (1998) Equation of state of brucite: single-crystal Brillouin spectroscopy study and polycrystalline pressure–volume–temperature measurement. Am Mineral 83:68–74

    Google Scholar 

  • Yagi T, Suzuki T, Akimoto S (1985) Static compression of wüstite (Fe0.98O) to 120 GPa. J Geophys Res 90:8784–8788

    Article  Google Scholar 

  • Zhao J, Ross NL, Angel RJ (2004) Tilting and distortion of CaSnO3 perovskite to 7 GPa determined from single-crystal X-ray diffraction. Phys Chem Minerals 31:299–305

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. H. Takei for providing the single crystal of ilmenite-type MnTiO3 used in the present study. Fruitful discussions with Drs. K. Ohgushi and K. Niwa are greatly appreciated. Critical reviews by two referees (Drs. K. Fujino and T. Sakai) were helpful in improving the manuscript. Several runs of high-pressure in situ X-ray experiments were conducted at the SPring-8 and Photon Factory under the auspices of proposals 2009B1238 and 08G042, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, T., Yagi, T. & Nishio-Hamane, D. High-pressure phase behavior of MnTiO3: decomposition of perovskite into MnO and MnTi2O5 . Phys Chem Minerals 38, 251–258 (2011). https://doi.org/10.1007/s00269-010-0400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0400-5

Keywords

Navigation