Skip to main content

Advertisement

Log in

Vibrational and thermodynamic properties of Ni3S2 polymorphs from first-principles calculations

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We have calculated the compressional, vibrational, and thermodynamic properties of Ni3S2 heazlewoodite and the high-pressure orthorhombic phase (with Cmcm symmetry) using the generalized gradient approximation to the density functional theory in conjunction with the quasi-harmonic approximation. The predicted Raman frequencies of heazlewoodite are in good agreement with room-temperature measurements. The calculated thermodynamic properties of heazlewoodite at room conditions agree very well with experiments, but at high temperatures (especially above 500 K) the heat capacity data from experiments are significantly larger than the quasi-harmonic results, indicating that heazlewoodite is anharmonic. On the other hand, the obtained vibrational density of states of the orthorhombic phase at 20 GPa reveals a group of low-frequency vibrational modes which are absent in heazlewoodite. These low-frequency modes contribute substantially to thermal expansivity, heat capacity, entropy, and Grüneisen parameter of the orthorhombic phase. The calculated phase boundary between heazlewoodite and the orthorhombic phase is consistent with high-pressure experiments; the predicted transition pressure is 17.9 GPa at 300 K with a negative Clapeyron slope of −8.5 MPa/K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen A, Haflan B, Kofstad P, Lillerud PK (1987) High temperature corrosion of nickel and dilute nickel-based alloys in (SO2–O2)/SO3 Mixtures. Mater Sci Eng 87:45–50

    Article  Google Scholar 

  • Capillas C, Kroumova E, Aroyo MI, Perez-Mato JM, Stokes HT, Hatch DM (2003) SYMMODES: a software package for group-theoretical analysis of structural phase transitions. J Appl Cryst 36(3 Part 2):953–954

    Article  Google Scholar 

  • Carrier P, Wentzcovitch R, Tsuchiya J (2007) First-principles prediction of crystal structures at high temperatures using the quasiharmonic approximation. Phys Rev B 76(6):064, 116

    Article  Google Scholar 

  • Cheng Z, Abernathy H, Liu M (2007) Raman spectroscopy of nickel sulfide Ni3S2. J Phys Chem C 111:17997–18000

    Google Scholar 

  • Fjellvåg H, Andersen A (1994) Properties of Ni3S2 at high temperatures. Acta Chem Scand 48:290–293

    Article  Google Scholar 

  • Fleet ME (1977) The crystal structure of heazlewoodite, and metallic bonds in sulfide minerals. Am Mineral 62:341–345

    Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:5502. doi:10.1088/0953-8984/21/39/395502

    Google Scholar 

  • Gibbs GV, Downs RT, Prewitt CT, Rosso KM, Ross NL, Cox DF (2005) Electron density distributions calculated for the nickel sulfides millerite, vaesite, and heazlewoodite and nickel metal: a case for the importance of Ni-Ni bond paths for electron transport. J Phys Chem B 109:21788–21795

    Google Scholar 

  • Guo J, Griffin WL, O’Reilly SY (1999) Geochemistry and origin of sulphide minerals in mantle xenoliths: Qilin, southeastern China. J Petrol 40(7):1125–1149

    Article  Google Scholar 

  • Lin RY, Hu DC, Chang YA (1978)Thermodynamics and phase relationships of transition metal-sulfur systems: II. Nickel-sulfur system. Metall Trans B 9(4):531–538

    Google Scholar 

  • Louie SG, Froyen S, Cohen ML (1982) Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys Rev B 26:1738–1742

    Article  Google Scholar 

  • Lu ZW, Klein BM, Singh DJ (1996) Electronic structure of heazlewoodite Ni3S2. Phys Rev B 54(19):13542–13545

    Google Scholar 

  • Methfessel M, Paxton AT (1989) High-precision sampling for brillouin-zone integration in metals. Phys Rev B 40(6):3616–3621. doi:10.1103/PhysRevB.40.3616

    Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Murnaghan FD (1937) Finite deformations of an elastic solid. Am J Math 59:235–260

    Google Scholar 

  • Parise JB (1980) Structure of hazelwoodite (Ni3S2). Acta Cryst B 36:1179–1180

    Article  Google Scholar 

  • Pasquariello DM, Kershaw R, Passaretti JD, Dwight K, Wold A (1984) Low-temperature synthesis and properties of cobalt sulfide (Co9S8), nickel sulfide (Ni3S2), and iron sulfide (Fe7S8). Inorg Chem 23(7):872–874

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys Rev B 46:12947–12954. doi:10.1103/PhysRevB.46.12947

    Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Prewitt CT, Gramsch SA, Fei Y (2002) High-pressure crystal chemistry of nickel sulphides. J Phys Condens Matter 14:11411–11415. doi:10.1088/0953-8984/14/44/491

    Google Scholar 

  • Stølen S, Grønvold F, Westrum EF, Kolonin GR (1991) Heat capacity and thermodynamic properties of synthetic heazlewoodite, Ni3S2, and of the high-temperature phase Ni3 ± x S2. J Chem Thermodyn 23:77–93

    Article  Google Scholar 

  • Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895. doi:10.1103/PhysRevB.41.7892

    Google Scholar 

  • Wang JH, Cheng Z, Brédas JL, Liu M (2007) Electronic and vibrational properties of nickel sulfides from first principles. J Chem Phys 127(21):214, 705. doi:10.1063/1.2801985

    Google Scholar 

  • Wentzcovitch RM, Yu YG, Wu Z (2010) Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory. In: Wentzcovitch RM, Stixrude L (eds) Theoretical and computational methods in mineral physics: geophysical applications. Reviews in Mineralogy and Geochemistry, vol 71, pp 59–98

  • Yu YG, Ross NL (2010) Prediction of high-pressure polymorphism in NiS2 at megabar pressures. J Phys Condens Matter 22:235, 401

    Google Scholar 

Download references

Acknowledgments

Research supported by NSF grant EAR-0609885 to N. L. Ross, G. V. Gibbs and R. J. Angel. Computations are performed on the Hess cluster at the Geoscicence Department at Virginia Tech. YGY appreciates Prof. S. King and Prof. Y. Zhou for kindly sharing their computational resources and thanks R. Godbee for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang G. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y.G., Ross, N.L. Vibrational and thermodynamic properties of Ni3S2 polymorphs from first-principles calculations. Phys Chem Minerals 38, 241–249 (2011). https://doi.org/10.1007/s00269-010-0399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0399-7

Keywords

Navigation