Physics and Chemistry of Minerals

, Volume 38, Issue 3, pp 203–214 | Cite as

Phase relations in Fe–Ni–C system at high pressures and temperatures

  • O. Narygina
  • L. S. Dubrovinsky
  • N. Miyajima
  • C. A. McCammon
  • I. Yu. Kantor
  • M. Mezouar
  • V. B. Prakapenka
  • N. A. Dubrovinskaia
  • V. Dmitriev
Original Paper

Abstract

We performed comparative study of phase relations in Fe1−xNix (0.10 ≤ x ≤ 0.22 atomic fraction) and Fe0.90Ni0.10−xCx (0.1 ≤ x ≤ 0.5 atomic fraction) systems at pressures to 45 GPa and temperatures to 2,600 K using laser-heated diamond anvil cell and large-volume press (LVP) techniques. We show that laser heating of Fe,Ni alloys in DAC even to relatively low temperatures can lead to the contamination of the sample with the carbon coming from diamond anvils, which results in the decomposition of the alloy into iron- and nickel-rich phases. Based on the results of LVP experiments with Fe–Ni–C system (at pressures up to 20 GPa and temperatures to 2,300 K) we demonstrate decrease of carbon solubility in Fe,Ni alloy with pressure.

Keywords

LH-DAC Large-volume press Martensitic transformation Carbon solubility in Fe,Ni alloy 

Supplementary material

269_2010_396_MOESM1_ESM.doc (152 kb)
Supplementary material (PDF 65 kb)

References

  1. Akimoto S (1987) High-pressure research in geophysics: past, present, and future, in high-pressure research in mineral physics. In: Manghnani MH, Syono Y (eds) Terra Scientific Publishing Company, Tokyo, pp 1–13Google Scholar
  2. Alfè D (2009) Temperature of the inner-core boundary of the Earth: melting of iron at high pressure from first-principles coexistence simulations. Phys Rev B (Rapids) 79:060101(R)Google Scholar
  3. Allégre CJ, Poirier J-P, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515–526CrossRefGoogle Scholar
  4. Badding JV, Mao H-K, Hemley RJ (1991) High-pressure chemistry of hydrogen in metals: in-situ study of iron-hydrate. Science 253:421–424CrossRefGoogle Scholar
  5. Birch F (1952) Elasticity and constitution of the Earth’s interior. J Geophys Res 57:227–286CrossRefGoogle Scholar
  6. Boehler R (1986) The phase diagram of iron to 430 kbar. Geophys Res Lett 13:1153–1156CrossRefGoogle Scholar
  7. Boehler R (1993) Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature 363:534–536CrossRefGoogle Scholar
  8. Brown JM (2000) The NaCl pressure standard. J Appl Phys 86:5801–5808CrossRefGoogle Scholar
  9. Brown JM, McQueen RG (1986) Phase transitions, grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J Geophys Res 91:7485–7494CrossRefGoogle Scholar
  10. Cliff G, Lorimer GW (1975) The qualitative analysis of thin specimens. J Microsc 103:203–207Google Scholar
  11. Cohen RE, Mukherjee S (2004) Non-collinear magnetism in iron at high pressures. Phys Earth Planet Int 143–144:445–453CrossRefGoogle Scholar
  12. Dabrowski L, Suwalski J, Sidzhimov B, Christov V (1994) Investigations of ordering dynamics in carbon martensite. Acta Metall Mater 42(7):2375–2380CrossRefGoogle Scholar
  13. Dasgupta R, Walker D (2008) Carbon in the core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle. Geochim Cosmochim Acta 72:4627–4641CrossRefGoogle Scholar
  14. Dewaele A, Loubeyre P, Occelli F et al (2006) Quasihydrostatic equation of state of iron above 2 Mbar. Phys Rev Lett 97:215504–215507CrossRefGoogle Scholar
  15. Dubrovinsky LS, Saxena SK, Lazor P (1998) High-pressure and high-temperature X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell. Phys Chem Miner 25:434–441CrossRefGoogle Scholar
  16. Dubrovinsky LS, Dubrovinskaia NA, Abrikosov IA et al (2001) Pressure induced invar effect in Fe,Ni alloys. Phys Rev Lett 86:4851–4854CrossRefGoogle Scholar
  17. Dubrovinsky LS, Dubrovinskaia NA, Narygina O et al (2007) Body-centered cubic iron–nickel alloy in Earth’s core. Science 316:1880–1883CrossRefGoogle Scholar
  18. Fei Y, Mao H-K (1994) In situ determination of the Ni–As phase of FeO at high pressure and temperature. Science 266:1678–1680CrossRefGoogle Scholar
  19. Fei Y, Preitt CT, Mao H-K, Bretka CM (1995) Structure and density of FeS at high pressure and high temperature and the internal structure of Mars. Science 268:1892–1894CrossRefGoogle Scholar
  20. Fei Y, Li J, Bertka CM, Preitt CT (2000) Structure type and bulk modulus of Fe3S a new iron–sulfur compound. Am Mineral 85:1830–1833Google Scholar
  21. Fei Y, Wang Y, Deng L (2007) Melting relations in Fe–C–S system at high pressure implications for the chemistry of the cores of terrestrial planets. Lunar and Planetary Science conference XXXVIII, abstract 1231Google Scholar
  22. Fialin M, Catillon G, Andrault D (2009) Disproportionation of Fe2+ in Al-free silicate perovskite in the laser heated diamond anvil cell as recorded by electron probe microanalysis of oxygen. Phys Chem Miner 36:183–191CrossRefGoogle Scholar
  23. Frost DJ, Langenhorst F, van Aken PA (2001) Fe–Mg partitioning between ringwoodite and magnesiowustite and the effect of pressure, temperature and oxygen fugacity. Phys Chem Miner 28:455–470CrossRefGoogle Scholar
  24. Funamori N, Yagi T, Uchida T (1996) High-pressure and high-temperature in-situ X-ray diffraction study of iron to above 68 GPa using MA8-type apparatus. Geophys Res Lett 23:953–956CrossRefGoogle Scholar
  25. Génin J-M (1987) The clustering and coarsening of carbon multiplets during the aging of martensite from Mössbauer spectroscopy: the pre-precipitation stage of epsilon carbide. Metall Mater Trans A 18:1371–1388CrossRefGoogle Scholar
  26. Génin J-M, Flinn PA (1966) Mössbauer effect evidence for the clustering of carbon atoms in iron–carbon martensite during aging at room temperature. Phys Lett 22:392–393CrossRefGoogle Scholar
  27. Gielen PM, Kaplow R (1967) Mössbauer effect in iron–carbon and iron–nitrogen alloys. Acta Metall 15:49–63CrossRefGoogle Scholar
  28. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall, London, pp 314–315 and the references thereinGoogle Scholar
  29. Gulyaev AP (1977) Metallovedenie, metallurgy, MoscowGoogle Scholar
  30. Hammersley AP (1998) FIT2D V9.129 reference manual V3.1 ESRF internal report ESRF98HA01T. http://www.esrf.eu/computing/scientific/FIT2D/FIT2D_REF/fit2d_r.html
  31. Heinz DL, Sweeney JS, Miller P (1991) A laser-heating system that stabilizes and controls the temperature—diamond anvil cell applications. Rev Sci Instrum 62:1568–1575CrossRefGoogle Scholar
  32. HStC O’Neill, Palme H (1998) Composition of the silicate Earth: implications for accretion and core formation. In: Jackson I (ed) The Earth’s mantle. Cambridge University Press, Cambridge, pp 3–12Google Scholar
  33. Huang E, Bassett W, Weathers MS (1988) Phase relationships in Fe,Ni alloys at high pressures and temperatures. J Geophys Res 93:7741–7746CrossRefGoogle Scholar
  34. Huang E, Bassett W, Weathers MS (1992) Phase diagram and elastic properties of Fe 30% Ni alloy by synchrotron radiation. J Geophys Res 97:4497–4502CrossRefGoogle Scholar
  35. Huang L, Skorodumova NV, Belonoshko AB et al (2005) Carbon in iron phases under high pressure. Geophys Res Lett 32:L21314CrossRefGoogle Scholar
  36. Ino H, Ito T, Nasu S, Gonser U (1982) A study of interstitial atom configuration in fresh and aged iron–carbon martensite by Mossbauer spectroscopy. Acta Metall 30:9–20CrossRefGoogle Scholar
  37. Jiang DE, Carter EA (2003) Carbon dissolution and diffusion in ferrite and austenite from first principles. Phys Rev B 67:214103–214111CrossRefGoogle Scholar
  38. Kakeshita T, Shimizu K, Akahama Y et al (1988) Effect of hydrostatic pressure on martensitic transformations in Fe,Ni and Fe,Ni–C alloys. Trans Jpn Inst Met 29:109–115Google Scholar
  39. Knittel E, Williams Q (1995) Static compression of ε-FeSi and evolution of reduced silicon as a deep Earth constituent. Geophys Res Lett 22:445–448CrossRefGoogle Scholar
  40. Komabayashi T, Fei Y, Meng Y, Prakapenka V (2009) In-situ X-ray diffraction measurements of the γ–ε transition boundary of iron in an internally-heated diamond anvil cell. Earth Plant Sci Lett 282:252–257CrossRefGoogle Scholar
  41. Kubo A, Akaogi M (2000) Post-garnet transitions in the system Mg4Si4O12–Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite, and perovskite. Phys Earth Planet Int 125:105–112Google Scholar
  42. Kubo A, Ito E, Katsura T, Shinmei T, Yamada H, Nishikawa O, Song M, Funakoshi K (2003) In situ X-ray observation of iron using Kawai-type apparatus equipped with sintered diamond: absence of β phase up to 44 GPa and 2,100 K. Geophys Res Lett 30:1126–1130CrossRefGoogle Scholar
  43. Kurdjumov G, Kaminsky E (1928) X-ray studies of the structure of quenched carbon steel. Nature 122:475–476CrossRefGoogle Scholar
  44. Kurdjumov G, Kaminsky E (1929) Eine röntgenographische Untersuchung der Struktur des gehärteten. Kohlenstoffstahls Z Phys 53:696–707CrossRefGoogle Scholar
  45. Laio A, Bernard S, Chiarotti GL et al (2000) Physics of iron at Earth’s core conditions. Science 287:1027–1030CrossRefGoogle Scholar
  46. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86, p 748Google Scholar
  47. Lin J-F, Heinz DL, Campbell AJ et al (2002) Iron–nickel alloy in the Earth’s core. Geophys Res Lett 29:109–111Google Scholar
  48. Liu J, Dubrovinsky LS, Boffa Ballaran T, Crichton W (2007) Equation of state and thermal expansivity of LiF and NaF. High Press Res 27:483–489CrossRefGoogle Scholar
  49. Lord OT, Walter MJ, Dasgupta R et al (2009) Melting in the Fe–C system to 70 GPa. Earth Planet Sci Lett 284:157–167CrossRefGoogle Scholar
  50. Manghnani MH, Syono Y (1987) High pressure research in mineral physics. Terra Scientific Publishing Company, TokyoGoogle Scholar
  51. Mao H-K, Xu J, Bell PM (1986) Calibration of the ruby pressure gage to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676CrossRefGoogle Scholar
  52. Mao H-K, Bell PM, Hadidiacos C (1987) Experimental phase relations of iron to 360 kbar, 1,400 C, determined in and internally heated diamond-anvil apparatus. In: Manghnani MH, Syono Y (eds) High pressure research in mineral physics. Terra Scientific Publishing Company, Tokyo, pp 135–138Google Scholar
  53. Mao W, Campbell AJ, Heinz DL, Shen G (2006) Phase relations of Fe,Ni alloys at high pressure and temperature. Phys Earth Planet Int 155:146–151CrossRefGoogle Scholar
  54. Martens A (1878a) Ueber die mikroskopische Untersuchung des Eisens. Z Vereines Deutscher Ingenieure 22:11–18Google Scholar
  55. Martens A (1878b) Zur Mikrostructurdes Spiegeleisens—Die Erscheinungen auf den Bruchflächen. Z Vereines Deutscher Ingenieure 22:205–214Google Scholar
  56. Martens A (1878c) Zur Mikrostructurdes Spiegeleisens—Die Erscheinungen auf den Schliffflächen. Z Vereines Deutscher Ingenieure 22:481–488Google Scholar
  57. Mazur J (1950) Lattice parameters of martensite and of austenite. Nature 166:828CrossRefGoogle Scholar
  58. McCammon CA, Rubie DC, Ross CR II, Sieifert F, HStC O’Neill (1992) Mössbauer spectra of 57Fe0.05Mg0.95SiO3 perovskite at 80 and 298 K. Am Mineral 77:894–897Google Scholar
  59. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  60. Morito S, Huang X, Furuhara T et al (2006) The morphology and crystallography of lath martensite in alloy steels. Acta Mater 54:5323–5331CrossRefGoogle Scholar
  61. Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys Res Lett 32:L033004.1–L033004.4CrossRefGoogle Scholar
  62. Nakajima T, Takahashi E, Suzuki T, Funakoshi KI (2009) “Carbon in the core” revisited. Phys Earth Planet Inter 174:202–211CrossRefGoogle Scholar
  63. Ohta K, Onoda S, Hirose K et al (2008) The electrical conductivity of post-perovskite in Earth’s D’’ layer. Science 320:89–91CrossRefGoogle Scholar
  64. Patel JR, Cohen M (1953) Criterion for the action of applied stress in the martensitic transformation. Acta Metall 1:531–538CrossRefGoogle Scholar
  65. Poirier J-P (1994) Light elements in the Earth’s outer core: a critical review. Phys Earth Planet Inter 85:319–337CrossRefGoogle Scholar
  66. Prakapenka VB, Shen G, Dubrovinsky LS (2003/2004) Carbon transport in diamond anvil cells. High Temp High Press 35/36:237–249Google Scholar
  67. Ringwood AE (1979) Origin of the Earth and Moon. Springer, BerlinGoogle Scholar
  68. Roberts CS (1953) Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite. Trans Am Inst Metall Eng 197:203–204Google Scholar
  69. Rouquette J, Dolejš D, Kantor IYu et al (2008) Iron–carbon interactions at high temperatures and pressures. Appl Phys Lett 92:121912.1–121912.3CrossRefGoogle Scholar
  70. Sanloup C, Guyot F, Gillet P et al (2000) Density measurements of liquid Fe–S alloys at high-pressure. Geophys Res Lett 27:811–814CrossRefGoogle Scholar
  71. Schen G, Mao H-K, Hemley RJ et al (1998) Melting and crystal structure of iron at high pressures and temperatures. Geophys Res Lett 25:373–376CrossRefGoogle Scholar
  72. Scott HP, Williams Q, Knittle E (2001) Stability and equation of state of Fe3C to 73 GPa: implications for carbon in the Earth’s core. Geophys Res Lett 28:1875–1878CrossRefGoogle Scholar
  73. Shackelford J (2001) CRC materials science and engineering handbook. CRC Press, Boca RatonGoogle Scholar
  74. Shallcross S, Kissavos AE, Sharma S, Meded V (2006) Noncollinear order in the γ-Fe system: generalized Heisenberg approach. Phys Rev B 73:104443–104448CrossRefGoogle Scholar
  75. Stevens W, Haynes AG (1956) The temperature of forming martensite and bainite in low-alloy steels. J Iron Steel Inst 183:349–359Google Scholar
  76. Stixrude L, Cohen RE, Singh DJ (1994) Iron at high pressure: linearized-augmented-plane-wave computations in the generalized-gradient approximation. Phys Rev B 50:6442–6445CrossRefGoogle Scholar
  77. Troiano A, Greninger A (1946) The martensite transformation. Metal Prog 50:303–307Google Scholar
  78. Vocadlo L, Alfè D, Brodholt J et al (2000) Ab-initio free energy calculations on the polymorphs of iron at core conditions. Phys Earth Planet Int 117:123–137CrossRefGoogle Scholar
  79. Williams Q, Jeanloz R, Bass J et al (1987) The melting curve of iron to 250 gigapascals: a constraint on the temperature at the Earth’s center. Science 236:181–182CrossRefGoogle Scholar
  80. Wood BJ (1993) Carbon in the core. Earth Planet Sci Lett 117:593–607CrossRefGoogle Scholar
  81. Xiao L, Fan Z, Jinxiu Z (1995) Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study. Phys Rev B 52:9970–9978CrossRefGoogle Scholar
  82. Xie ZL, Sundqvist B, Hiinninen H et al (1993) Isothermal martensitic transformation under hydrostatic pressure in an Fe,Ni–C alloy at low temperatures. Acta Metall Mater 41:2283–2290CrossRefGoogle Scholar
  83. Yoo CS, Holmes NC, Ross M et al (1993) Shock temperatures and melting of iron at Earth core conditions. Phys Rev Lett 70:3931–3934CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • O. Narygina
    • 1
    • 4
  • L. S. Dubrovinsky
    • 1
  • N. Miyajima
    • 1
  • C. A. McCammon
    • 1
  • I. Yu. Kantor
    • 1
    • 2
  • M. Mezouar
    • 2
  • V. B. Prakapenka
    • 3
  • N. A. Dubrovinskaia
    • 1
    • 5
  • V. Dmitriev
    • 2
  1. 1.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  2. 2.European Synchrotron Radiation FacilityGrenoble CedexFrance
  3. 3.Center for Advanced Radiation SourcesUniversity of ChicagoChicagoUSA
  4. 4.SUPA, School of Physics and Centre for Science at Extreme ConditionsThe University of EdinburghEdinburghUK
  5. 5.Institut für GeowissenschaftenUniversität HeidelbergHeidelbergGermany

Personalised recommendations