Skip to main content

Thermal expansion and high-temperature P21/cC2/c phase transition in clinopyroxene-type LiFeGe2O6 and comparison to NaFe(Si,Ge)2O6

Abstract

A synthetic clinopyroxene with composition LiFe3+Ge2O6, monoclinic s.g. P21/c, a = 9.8792(7), b = 8.8095(5), c = 5.3754(3) Å, β = 108.844(6)°, V = 442.75(16) Å3, has been studied by in situ low- and high-temperature single-crystal X-ray diffraction. The variation of lattice parameters and the intensity of the b-type reflections (h + k = 2n + 1, only present in the P-symmetry) with increasing temperature showed a displacive phase transition from space group P21/c to C2/c at a transition temperature T tr = 789 K, first order in character, with a sudden volume increase of 1.6% and a decrease of β by 1° at the transition. This spontaneous dilatation is reversible, shows a limited hysteresis of ±10°C, and corresponds to the vanishing of the b-type reflections, thus indicating a symmetry increase to space group C2/c. Below T tr an expansion is observed for all the cell parameters, while the β angle remained almost constant; at T > T tr the thermal volume expansion is due to dilatation of the structure in the \((\bar{1}\,0\,1) \) plane, mostly along [0 1 0], and pure shear in the (0 1 0) plane due to the decrease of β. From comparison with silicate analogues, the germanate clinopyroxenes are more expansible, while the P21/c expands more than the C2/c phase. The evolution of Q 2 (calculated as the normalized intensity of b-type reflections) with T in the framework of the Landau theory has been done using a standard expression for a first order phase transition. We observe a jump of Q 20  = 0.538(2) at T tr, with T c of 481(7) K, b/a = −2,290 K, and c/a = 3,192 K, and thus far from being tri-critical point. A closely related composition (LiFe3+Si2O6) shows an equivalent phase transition at 228 K, which is very close to the tri-critical point and 561 K cooler. This result indicates that a change in the composition of tetrahedral sites can have dramatic effects on the P21/c ↔ C2/c displacive phase transition in clinopyroxenes. The major changes observed in the evolution of the crystal structure with T are observed in the M2 polyhedron, with a volume decrease by ca. 13.3%, compared to ca. 1.3% observed in the M1 polyhedron. The tetrahedra behave as rigid units with neither a significant change of volume at T > T tr (<1‰), nor a change of tilting of the basal plane. No change in coordination is observed at T > T tr in the M2 polyhedron, which remains sixfold coordinated although a strong deformation of this polyhedron is observed. This deformation is related to a strong change by 51.4° at T tr of the kinking angle (O3–O3–O3 angle) of the B-chain of tetrahedra, which switches from O-rotated to S-rotated [from 143.3(5)° to 194.7(6)°]. The A-chain is S-rotated at T < T tr [206.8(5)° at 703 K] and extends by 12° at the transition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Arlt T, Angel RJ (2000) Displacive phase transition in C-centred clinopyroxenes: spodumene, LiScSi2O6 and ZnSiO3. Phys Chem Min 27:719–731

    Article  Google Scholar 

  2. Arlt T, Armbruster T (1997) The temperature-dependent P21/c  C2/c phase transition in the clinopyroxene kanoite MnMg[Si2O6]; a single-crystal X-ray and optical study. Eur J Mineral 9:953–964

    Google Scholar 

  3. Arlt T, Kunz M, Stolz J, Armbruster T, Angel RJ (2000) P-T-X data on P21/c-clinopyroxenes and their displacive phase transitions. Contrib Mineral Petrol 138:35–45

    Article  Google Scholar 

  4. Bartelmehs KL, Downs RT, Gibbs GV, Boisen MB Jr, Birch JB (1995) Tetrahedral rigid-body motion in silicates. Am Mineral 80:680–690

    Google Scholar 

  5. Behruzi M, Hahn T, Prewitt CT, Baldwin K (1984) Low- and high-temperature crystal structures of LiFeGe2O6, LiFeSi2O6 and LiCrSi2O6. Acta Crystallogr A 40(Suppl C):247

    Google Scholar 

  6. Blessing RH, Coppens P, Becker P (1974) Computer analysis of step scanned X-ray data. J Appl Crystalogr 7:488–492

    Article  Google Scholar 

  7. Brown ID (1981) The bond-valence method: an empirical approach to chemical structure and bonding. In: O’Keeffe M, Navrotsky A (eds) Structure and bonding in crystals II. Academic Press, New York, pp 1–30

    Google Scholar 

  8. Bruce AD, Cowley RA (1981) Structural phase transitions. Taylor and Francis, London, p 326

    Google Scholar 

  9. Bruker-Nonius (2004) APEX2: software suite for data collection and processing of single crystal X-ray diffraction data. Bruker AXS Inc, Madison

  10. Cámara F, Carpenter MA, Domeneghetti MC, Tazzoli V (2002) Non-convergent ordering and displacive phase transition in pigeonite: in situ HT XRD study. Phys Chem Miner 29:331–340

    Article  Google Scholar 

  11. Cámara F, Iezzi G, Oberti R (2003a) HT-XRD study of synthetic ferrian magnesian spodumene: the effect of site dimension on the P21/c ↔ C2/c phase transition. Phys Chem Miner 30:20–30

    Article  Google Scholar 

  12. Cámara F, Carpenter MA, Domeneghetti MC, Tazzoli V (2003b) Coupling between non-convergent ordering and transition temperature in the C2/c  P21/c phase transition in pigeonite. Am Mineral 88:1115–1128

    Google Scholar 

  13. Cámara F, Nestola F, Angel RJ, Ohashi H (2009) Spontaneous strain variations through the low-temperature displacive phase transition of LiGaSi2O6 clinoyproxene. Eur J Mineral 21:599–614

    Article  Google Scholar 

  14. Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Mineral 66:1–50

    Google Scholar 

  15. Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, spodumene and ureite. Am Mineral 58:594–618

    Google Scholar 

  16. Carpenter MA, Salje EKH, Graeme-Barber A (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transition in minerals. Eur J Mineral 10:621–691

    Google Scholar 

  17. Clark JR, Appleman DE, Papike JJ (1969) Crystal chemical characterization pf clino-pyroxenes based on eight new structure refinements. Mineral Soc Am Spec Pap 2:31–50

    Google Scholar 

  18. Downs RT (2005) XtalDraw for Windows Commission on Powder Diffraction. IUCr Newslett 30:32–33

    Google Scholar 

  19. Farrugia L (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838

    Article  Google Scholar 

  20. Hawthorne FC, Ungaretti L, Oberti R (1995) Site populations in minerals: terminology and presentation of results of crystal structure refinement. Can Mineral 33:907–911

    Google Scholar 

  21. Hugh-Jones D (1997) Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxens. Am Mineral 82:689–696

    Google Scholar 

  22. Knight KS (1996) A neutron powder diffraction determination of the thermal expansion tensor of crocoite (PbCrO4) between 60 and 290 K. Min Mag 60:963–972

    Article  Google Scholar 

  23. Knight KS, Stretton IC, Schonfield PF (1999) Temperature evolution between 50 K and 320 K of the thermal expansion tensor of gypsum derived from neutron powder diffraction data. Phys Chem Miner 26:477–483

    Article  Google Scholar 

  24. Lehmann MS, Larsen FK (1974) A method for location of the peaks in step-scan-measured Bragg reflections. Acta Crystallogr A30:580–584

    Google Scholar 

  25. Levien L, Prewitt CT (1981) High pressure structural study of diopside. Am Mineral 66:315–323

    Google Scholar 

  26. Nestola F, Gatta DG, Boffa Ballaran T (2006) The effect of Ca substitution on the elastic and structural behaviour of orthoenstatite. Am Mineral 91:809–815

    Article  Google Scholar 

  27. Nestola F, Boffa Ballaran T, Ohashi H (2008a) The high-pressure C2/c-P21/c phase transition along the LiAlSi2O6-LiGaSi2O6 solid solution. Phys Chem Miner 35:477–484

    Article  Google Scholar 

  28. Nestola F, Boffa Ballaran T, Liebske C, Thompson R, Downs RT (2008b) The effect of the hedenbergitic substitution on the compressibility of jadeite. Am Mineral 93:1005–1013

    Article  Google Scholar 

  29. Nestola F, Redhammer GJ, Pamato MG, Secco L, Dal Negro A (2009) High-pressure phase transformation in LiFeGe2O6 pyroxene. Am Mineral 94:616–621

    Article  Google Scholar 

  30. North ACT, Phillips DC, Mathews FS (1968) A semi-empirical method of absorption correction. Acta Crystallogr A24:351–359

    Google Scholar 

  31. Ohashi H, Osawa T, Sato A (2003) Crystal structures of Li(Al, Ga)Si2O6 pyroxenes. In: Ohashi H (ed) X-ray study on Si–O bonding. Maruzen Publishing Service Center, Tokyo, pp 146–158

    Google Scholar 

  32. Pachler A (2009) Strukturelle Phasenbeziehungen in (Na,Li)M2(Fe,Cr)M1Ge2O6 Klinopyroxenen als Funktion von XLi und T. Master Thesis, University of Salzburg

  33. Pommier CJS, Downs RT, Stimpfl M, Redhammer GJ, Denton MB (2005) Raman and X-ray investigations of LiFeSi2O6 pyroxene under pressure. J Raman Spectr 36:864–871

    Article  Google Scholar 

  34. Redhammer GJ, Roth G (2004) Structural changes upon the temperature dependent C2/c → P21/c phase transition in LiMe3+Si2O6 clinopyroxenes, Me = Cr, Ga, Fe, V and Sc. Z Krist 219(10):585–605

    Article  Google Scholar 

  35. Redhammer GJ, Roth G, Paulus W, André G, Lottermoser W, Amthauer G, Treutmann W, Koppelhuber-Bitschnau B (2001) Crystal and magnetic structure of Li-Aegirine LiFe3+Si2O6: a temperature dependent study. Phys Chem Miner 28:337–346

    Article  Google Scholar 

  36. Redhammer GJ, Amthauer G, Roth G, Tippelt G, Lottermoser W (2006) Single crystal X-ray diffraction and temperature dependent 57Fe Mössbauer spectroscopy on the hedenbergite–aegirine (Ca, Na)(Fe2+, Fe3+)Si2O6 solid solution. Am Mineral 91:1271–1292

    Article  Google Scholar 

  37. Redhammer GJ, Roth G, Treutmann W, Hoelzel M, Paulus W, André G, Pietzonka C, Amthauer G (2009) The magnetic structure of clinopyroxene-type LiFeGe2O6 and revised data on multiferroic LiFeSi2O6. J Solid State Chem 182:2374–2384

    Article  Google Scholar 

  38. Redhammer GJ, Senyshin A, Tippelt G, Pietzonka C, Roth G, Amthauer G (2010) Magnetic and nuclear structure and thermal expansion of orthorhombic and monoclinic polymorphs of CoGeO3 pyroxene. Phys Chem Min. doi:10.1007/s00269-009-0335-x)

  39. Renner B, Lehmann G (1986) Correlation of angular and bond lengths distortion in TO4 units in crystals. Z Krist 175:43–59

    Article  Google Scholar 

  40. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation, a quantitative measure of distrotion in polyhedra. Science 172:567–570

    Article  Google Scholar 

  41. Rodríguez-Carvajal J (2001) Recent developments of the program. In: Commission on powder diffraction (IUCr). Newsletter 26:12–19. http://journals.iucr.org/iucr-top/comm/cpd/Newsletters/

    Google Scholar 

  42. Ross NL, Navrotsky A (1988) Study of MgGeO3 polymorphs (orthopyroxene, clinopyroxene, and ilmenite structures) by calorimetry, spectroscopy and phase equilibria. Am Mineral 73:1355–1365

    Google Scholar 

  43. Schlenker JL, Gibbs GV, Boisen MB Jr (1975) Thermal expansion coefficients for monoclinic crystals: a phenomenological approach. Am Min 60:828–833

    Google Scholar 

  44. Schomaker V, Trueblood KN (1968) On the rigid-body motion of molecules in crystals. Acta Crystallogr B24:63–76

    Google Scholar 

  45. Schonfield PF, Knight KS, van der Houwen JAM, Valsami-Jones E (2004) The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. Phys Chem Miner 31:606–624

    Article  Google Scholar 

  46. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Google Scholar 

  47. Stoe & Cie (1996) X-Shape and X-Red. Stoe & Cie Inc. Darmstadt, Germany

  48. Thompson RM, Downs RT (2007) The crystal structure of diopside at pressure to 10 GPa. Am Mineral 93:177–186

    Article  Google Scholar 

  49. Tribaudino M, Nestola F, Cámara F, Domeneghetti MC (2002) The high-temperature P21/c  C2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6): structural and thermodynamic behavior. Am Mineral 87:648–657

    Google Scholar 

  50. Tribaudino M, Nestola F, Prencipe M, Rundolf H (2003) A single-crystal neutron diffraction investigation of spodumene at 54 K. Can Mineral 41:521–527

    Article  Google Scholar 

  51. Tribaudino M, Nestola F, Ohashi H (2005) High temperature single crystal investigation in a clinopyroxen of composition (Na0.5Ca0.5)(Cr0.5Mg0.5)Si2O6. Eur J Mineral 17:297–304

    Article  Google Scholar 

  52. Tribaudino M, Nestola F, Bruno M, Boffa Ballaran T, Liebske C (2008) Thermal expansion along the NaAlSi2O6–NaFe3+Si2O6 and NaAlSi2O6–CaFe2+Si2O6 solid solutions. Phys Chem Miner 35:241–248

    Article  Google Scholar 

  53. Tribaudino M, Bromiley G, Ohashi H, Nestola F (2009) Synthesis, TEM characterization and thermal behaviour of LiNiSi2O6 pyroxene. Phys Chem Miner 36:527–536

    Article  Google Scholar 

  54. Ulrich A, Schranz W, Miletich R (2009) The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: a high-precision static compression study. Phys Chem Miner 36:545–555

    Article  Google Scholar 

  55. Yamanaka T, Hirano M, Takéuchi Y (1985) A high temperature transition in MgGeO3 from clinopyroxene (C2/c) type to orthopyroxene (Pbca) type. Am Mineral 70:365–374

    Google Scholar 

Download references

Acknowledgments

We thank A. Di Giulio and A. Ceriani (Università di Pavia) for letting us use their heating stage and microscope. This work was supported by the Fonds zur Förderung der wissenschaftlichen Forschung, FWF, Vienna under grants number R33-N10 and P19762/N10. Finacial support to M. Alvaro and F. Nestola has been provided by Italian project MIUR: PRIN 2006047943 (Coordinator P. F. Zanazzi), Fernando Cámara was supported by funding by CNR-IGG through the project TAP01.004.002. The paper benefited from the critical reviews of Mario Tribaudino and an anonymous reviewer.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Günther J. Redhammer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 2a and b (DOC 439 KB)

Supplementary Table 5 (DOC 103 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Redhammer, G.J., Cámara, F., Alvaro, M. et al. Thermal expansion and high-temperature P21/cC2/c phase transition in clinopyroxene-type LiFeGe2O6 and comparison to NaFe(Si,Ge)2O6 . Phys Chem Minerals 37, 685–704 (2010). https://doi.org/10.1007/s00269-010-0368-1

Download citation

Keywords

  • Clinopyroxene
  • Aegirine-type
  • LiFeGe2O6
  • X-ray diffraction
  • Phase transition
  • Landau theory