Skip to main content
Log in

Studies on the spin Hamiltonian parameters and local structure for Rh4+ and Ir4+ in TiO2

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The spin Hamiltonian (SH) parameters (g factors g x , g y and g z and the hyperfine structure constants A x , A y and A z ) and local structure for the rhombic Rh4+ and Ir4+ centers in TiO2 (rutile) are theoretically studied from the perturbation formulas of these parameters for a low spin (S = 1/2) d 5 ion under rhombically distorted octahedra. In the calculations, the ligand orbital and spin–orbit coupling contributions as well as the influence of the local lattice distortions are taken into account using the cluster approach. The local axial elongation ratios are found to be about 1.7 and 3 times, respectively, larger for the Rh4+ and Ir4+ centers than that (≈0.0075) for the host Ti4+ site in rutile, while the perpendicular distortion angles (≈−0.28° and −0.42°, respectively) are more than one order in magnitude smaller than the host value (≈−9.12°). This means that the impurity centers exhibit further elongations of the oxygen octahedra and much smaller perpendicular rhombic distortions as compared with those of the host Ti4+ site in TiO2. The above local lattice distortions can be mainly ascribed to the substitution of the host Ti4+ by the nd 5 impurities, which may induce different physical and chemical properties for the metal–ligand clusters. In addition, the influence of the Jahn–Teller effect on the local structure may not be completely excluded. The calculated SH parameters show reasonable agreement with the observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, London

    Google Scholar 

  • Aizawa M, Lee S, Anderson SL (2003) Deposition dynamics and chemical properties of size-selected Ir clusters on TiO2. Surf Sci 542:253–275

    Article  Google Scholar 

  • Barriuso MT, Aramburu JA, Moreno MJ (2002) Puzzling absence of hyperfine interaction in the D4h RhCl6 4− centre: role of the 4d–5s hybridization in Rh2+ centres. J Phys Condens Matter 14:6521–6530

    Article  Google Scholar 

  • Blazey KW, Levy F (1986) EPR of rhodium, osmium and iridium-doped rutile. Solid State Commun 59:335–338

    Article  Google Scholar 

  • Blazey KW, Müller KA (1983) Paramagnetic resonance and optical absorption of Co4+ in SrTiO3. J Phys C 16:5491–5502

    Article  Google Scholar 

  • Castañeda L, Maldonado A, Olvera M de la L (2008) Sensing properties of chemically sprayed TiO2 thin films using Ni, Ir, and Rh as catalysts. Sens Actuators B 133:687–693

    Google Scholar 

  • Chakravarty AS (1980) Introduction to the magnetic properties of solids. Wiley-Interscience, New York

    Google Scholar 

  • Chester PF (1961) Electron spin resonance in semiconducting rutile. J Appl Phys 32:2233–2236

    Article  Google Scholar 

  • Choi YN, Park IW, Kim SS, Park SS, Choh SH (1999) Electron paramagnetic resonance studies of Co2+ ions in congruent and nearly stoichiometric LiNbO3 single crystals J. Phys Condens Matter 11:4723–4730

    Article  Google Scholar 

  • Clementi E, Raimondi DL (1963) Atomic screen constants from SCF functions. J Chem Phys 38:2686–2689

    Article  Google Scholar 

  • Clementi E, Raimondi DL, Reinhardt WP (1967) Atomic screen constants from SCF functions. II. Atoms with 37 to 86 elements. J Chem Phys 47:1300–1307

    Article  Google Scholar 

  • Dai ZM, Burgeth G, Parrino F, Kisch H (2009) Visible light photocatalysis by a Titania-Rhodium(III) complex. J Organomet Chem 694:1049–1054

    Article  Google Scholar 

  • Douglas IN (1969) Optical spectra of IrCl6 2− in single crystals of Cs2ZrCl6, Cs2HfCl6, and K2SnCl6 at low temperatures. J Chem Phys 51:3066–3071

    Article  Google Scholar 

  • Errico LA, Rentería M, Weissmann M (2005) Theoretical study of magnetism in transition-metal-doped TiO2 and TiO2–δ. Phys Rev B 72:184425-1-8

    Google Scholar 

  • Gerritsen HJ, Sabisky ES (1962) Paramagnetic resonance of Ni2+ and Ni3+ in TiO2. Phys Rev 125:1853–1859

    Article  Google Scholar 

  • Ghita M, Fornari M, Singh DJ, Halilov SV (2005) Anomalous elastic softening of SmRu4P12 under high pressure. Phys Rev B 72:054114–054121

    Article  Google Scholar 

  • He L, Wu XX, Liu HG, Zheng WC (2007) Theoretical calculations of EPR g factors for Ni3+ ion at the interstitial site of SnO2 crystal. Spectrochim Acta A 68:891–893

    Article  Google Scholar 

  • Hikita H, Takeda K, Kimura Y (1992) Analytical determination of the local oxygen structure around Cr3+ in SnO2 rutile-type crystals by use of electron paramagnetic resonance. Phys Rev B 46:14381–14386

    Article  Google Scholar 

  • Hodgson EK, Fridovich I (1973) Reversal of the superoxide dismutase reaction. Biochem Biophys Res Commun 54:270–274

    Article  Google Scholar 

  • Holgado MJ, Rives V (1990) Carbonaceous residues in Rh/TiO2-catalyzed hydrogenolysis of short alkane. J Mol Catal 63:353–359

    Article  Google Scholar 

  • Jørgensen CK (1962) Absorption spectra and chemical bonding in complexes. Pergamon Press, Oxford

    Google Scholar 

  • Kikuchi C, Chen I, From WH, Dorain PB (1965) Spin resonance of SnO2:V and the vanadium 3d electron orbital. J Chem Phys 42:181–185

    Article  Google Scholar 

  • Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  • Moreno M, Barriuso MT, Aramburu JA (1992) Appl Magn Reson 3:283

  • Morrison CA (1992) Crystal field for transition-metal ions in laser host materials. Springer, Berlin

    Google Scholar 

  • Newman DJ, Ng B (1989) The superposition model of crystal field. Rep Prog Phys 52:699–763

    Article  Google Scholar 

  • Newman DJ, Pryce DC, Runciman WA (1978) Superposition model analysis of the near infrared spectrum of Fe2+ in pyrope-almandine garnets. Am Mineral 63:1278–1281

    Google Scholar 

  • O’Reilly TJ, Offenbacher EL (1971) Molecular orbital calculation for trigonally distorted octahedral complexes. J Chem Phys 54:3065–3069

    Article  Google Scholar 

  • Okamoto Y, Niitaka S, Uchida M, Waki T, Takigawa M, Nakatsu Y, Sekiyama A, Suga S, Arita R, Takagi H (2008) Band Jahn-Teller instability and formation of valence bond solid in a mixed-valent spinel oxide LiRh2O4. Phys Rev Lett 101:086404-1-4

    Google Scholar 

  • Ozturk O, Park JB, Ma S, Ratliff JS, Zhou J, Mullins DR, Chen DA (2007) Probing the interactions of Pt, Rh and bimetallic Pt-Rh clusters with the TiO2(110) support. Surf Sci 601:3099–3113

    Article  Google Scholar 

  • Pai WW, Wu TY, Lin CH, Wang BX, Huang YS, Chou HL (2007) A cross-sectional scanning tunneling microscopy study of IrO2 rutile single crystals. Surf Sci 601:L69–L72

    Article  Google Scholar 

  • Park JB, Ratliff JS, Ma S, Chen DA (2006) In situ scanning tunneling microscopy studies of bimetallic cluster growth: Pt-Rh on TiO2(110). Surf Sci 600:2913–2923

    Article  Google Scholar 

  • Raizman A, Suss JT (1974) In: Proceedings of the eighteenth ampere congress on magnetic resonance and related phenomena (edited by Allen PS, Andrews ER, Bates CA, 1975), vol 1. Amsterdam, Nottingham, North-Holland

  • Rudowicz C (1977) Fourth-order spin Hamiltonian terms for Fe2+ in rutile structure antiferromagnet FeF2. J Phys Chem Solids 38:1243–1251

    Article  Google Scholar 

  • Rudowicz C, Bramley R (1985) On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry. J Chem Phys 83:5192–5197

    Article  Google Scholar 

  • Rudowicz C, Zhou YY, Yu WL (1992) Crystal field analysis for 3d4 and 3d6 ions with an orbital singlet ground state at orthorhombic and tetragonal symmetry sites. J Phys Chem Solids 53:1227–1236

    Article  Google Scholar 

  • Rudowicz C, Yang ZY, Yeung YY, Qin J (2004) Crystal field and microscopic spin Hamiltonians approach including spin–spin and spin–other-orbit interactions for d2 and d8 ions at low symmetry C 3 symmetry sites: V3+ in Al2O3. J Phys Chem Solids 64:1419–1428

    Article  Google Scholar 

  • Schirmer OF, Forster A, Hesse H, Wohlecke M, Kapphan S (1984) Paramagnetic resonance and near-infrared optical absorption of SrTiO3:Ir4+. J Phys C 17:1321–1328

    Article  Google Scholar 

  • Wu SY, Zheng WC (2002) Studies of EPR g-factors on rutile (TiO2) with Co2+ ion. Z Naturforsch A 57:45–48

    Google Scholar 

  • Wu SY, Zhang HM, Lu GD, Zhang ZH, Wei LH (2008) Theoretical studies of the spin Hamiltonian parameters for the tetragonal Co4+ and Ir4+ centers in SrTiO3. Phys Stat Sol B 245:188–192

    Article  Google Scholar 

  • Yang ZY, Rudowicz C, Yeung YY (2004) Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals. Physica B 348:151–159

    Article  Google Scholar 

  • Yeung YY, Rudowicz C (1992) Ligand field analysis of the 3dn ions at orthorhombic or higher symmetry sites. Comput Chem 16:207–216

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Support Program for Academic Excellence of UESTC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L.L., Wu, S.Y., Xu, P. et al. Studies on the spin Hamiltonian parameters and local structure for Rh4+ and Ir4+ in TiO2 . Phys Chem Minerals 37, 497–504 (2010). https://doi.org/10.1007/s00269-009-0351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0351-x

Keywords

Navigation