Skip to main content

Advertisement

Log in

Fe–Mg partitioning between post-perovskite and ferropericlase in the lowermost mantle

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Fe–Mg partitioning between post-perovskite and ferropericlase has been studied using a laser-heated diamond anvil cell at pressures up to 154 GPa and 2,010 K which corresponds to the conditions in the lowermost mantle. The composition of the phases in the recovered samples was determined using analytical transmission electron microscopy. Our results reveal that the Fe–Mg partition coefficient between post-perovskite and ferropericlase (K PPv/FpD ) increases with decreasing bulk iron content. The compositional dependence of K PPv/FpD on the bulk iron content explains the inconsistency in previous studies, and the effect of the bulk iron content is the most dominant factor compared to other factors, such as temperature and aluminum content. Iron prefers ferropericlase compared to post-perovskite over a wide compositional range, whereas the iron content of post-perovskite (X PPvFe , the mole fraction) does not exceed a value of 0.10. The iron-rich ferropericlase phase may have significant influence on the physical properties, such as the seismic velocity and electrical conductivity at the core–mantle boundary region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akahama Y, Kawamura H (2004) High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys 96:3748–3751

    Article  Google Scholar 

  • Andrault D (2001) Evaluation of (Mg, Fe) partitioning between silicate perovskite and magnesiowustite up to 120 GPa and 2300 K. J Geophys Res 106:2079–2087

    Article  Google Scholar 

  • Andrault D, Fiquet G, Itié JP, Richet P, Gillet P, Haüsermann D, Hanfland M (1998) Thermal pressure in the laser-heated diamond-anvil cell: an X-ray diffraction study. Eur J Mineral 10:931–940

    Google Scholar 

  • Auzende AL, Badro J, Ryerson FJ, Weber PK, Fallon SJ, Addad A, Siebert J, Fiquet G (2008) Element partitioning between magnesium silicate and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet Sci Lett 269:164–174

    Article  Google Scholar 

  • Badro J, Fiquet G, Guyot F, Rueff J-P, Struzhkin VV, Vankó G, Monaco G (2003) Iron partitioning in earth’s mantle: toward a deep lower mantle discontinuity. Science 300:789–791

    Article  Google Scholar 

  • Boehler R (2000) High-pressure experiments and the phase diagram of lower mantle and core materials. Rev Geophys 38:221–245

    Article  Google Scholar 

  • Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207

    Google Scholar 

  • Fei Y, Zhang L, Corgne A, Watson H, Ricolleau A, Meng Y, Prakapenka V (2007) Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophys Res Lett 34:L17307. doi:10.1029/2007GL030712

    Article  Google Scholar 

  • Garnero EJ, Revenaugh JS, Williams Q, Lay T, Kellogg LH (1998) Ultralow velocity zone at the core-mantle boundary. In: Gurnis M, Wysession ME, Knittle E, Buffet BA (eds) The core-mantle boundary region. American Geophysical Union, Washington, DC, pp 319–334

    Google Scholar 

  • Heinz DL, Jeanloz R (1987) Measurement of the melting curve of Mg0.9Fe0.1SiO3 at lower mantle conditions and its geophysical implications. J Geophys Res 92:11437–11444

    Article  Google Scholar 

  • Hirose K (2006) Postperovskite phase transition and its geophysical implication. Rev Geophys 44:RG3001. doi:10.1029/2005RG000186

    Article  Google Scholar 

  • Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 237:239–251

    Article  Google Scholar 

  • Katsura T, Ito E (1996) Determination of Fe-Mg partitioning between perovskite and magnesiowustite. Geophys Res Lett 23:2005–2008

    Article  Google Scholar 

  • Kobayashi Y, Kondo T, Ohtani E, Hirao N, Miyajima N, Yagi T, Nagase T, Kikegawa T (2005) Fe-Mg partitioning between (Mg Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophys Res Lett 32:L19301. doi:10.1029/2005GL023257

    Article  Google Scholar 

  • Lay T, Garnero EJ, Williams Q (2004) Partial melting in a thermo-chemical boundary layer at base of the mantle. Phys Earth Planet Inter 146:441–467

    Article  Google Scholar 

  • Li X, Jeanloz R (1990) High pressure-temperature electrical conductivity of magnesiowüstite as a function of iron oxide concentration. J Geophys Res 95:21609–21612

    Article  Google Scholar 

  • Li X, Jeanloz R (1991) Effect of iron content on the electrical conductivity of perovskite and magnesiowustite assemblages at lower mantle conditions. J Geophys Res 96:6113–6120

    Article  Google Scholar 

  • Lin JF, Struzhkin VV, Jacobsen SD, Hu MY, Chow P, Kung J, Liu H, Mao HK, Hemley RJ (2005) Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature 436:377–380

    Article  Google Scholar 

  • Lin JF, Vanko G, Jacobsen SD, Iota V, Struzhkin VV, Prakapenka VB, Kuznetsov A, Yoo C-S (2007) Spin transition zone in Earth’s lower mantle. Science 317:1740–1743

    Article  Google Scholar 

  • Mao HK, Bell PM, Shanner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J Appl Phys 49:3276–3283

    Article  Google Scholar 

  • Mao W, Shen G, Prakapenka VB, Meng Y, Campbell AJ, Heinz DL, Shu J, Hemley RJ, Mao HK (2004) Ferromagnesian postperovskite silicate in the D″ layer of the Earth. Proc Natl Acad Sci 101:15867–15869

    Article  Google Scholar 

  • Mao W, Meng Y, Shen G, Prakapenka VB, Campbell AJ, Heinz DL, Shu J, Caracas R, Cohen RE, Fei Y, Hemley RJ, Mao HK (2005) Iron-rich silicate in the Earth’s D″ layer. Proc Natl Acad Sci 102:9751–9753

    Article  Google Scholar 

  • Mao W, Mao HK, Sturhahn W, Zhao J, Prakapenka VB, Meng Y, Shu J, Fei Y, Hemley RJ (2006) Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science 312:564–565

    Article  Google Scholar 

  • Marquardt H, Speziale S, Reichmann HJ, Frost DJ, Schilling FR, Garnero EJ (2009) Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science 324:224–226

    Article  Google Scholar 

  • Matsuzaka K, Akaogi M, Suzuki T, Suda T (2000) Mg-Fe partitioning between silicate spinel and magnesiowustite at high pressure: experimental determination and calculation of phase relations in the system Mg2SiO4-Fe2SiO4. Phys Chem Miner 27:310–319

    Article  Google Scholar 

  • Miyahara M, Sakai T, Kobayashi Y, Ohtani E, Kondo T, Nagase T, Yoo J-H, Nishijima M, Vashaei Z (2008) Application of FIB system to ultra-high-pressure Earth science. J Mineral Petrol Sci 103:88–93

    Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys Res Lett 32:L03304. doi:10.1029/2004GL021956

    Article  Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430:445–448

    Article  Google Scholar 

  • Ohishi Y, Hirao N, Sata N, Hirose K, Takata M (2008) Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8. High Press Res 28:163–173

    Article  Google Scholar 

  • Shieh SR, Duffy TS, Kubo A, Shen G, Prakapenka VB, Sata N, Hirose K, Ohishi Y (2006) Equation of state of the postperovskite phase synthesized from a natural (Mg, Fe)SiO3 orthopyroxene. Proc Natl Acad Sci 103:3039–3043

    Article  Google Scholar 

  • Sinmyo R, Hirose K, O’Neill HStC, Okunishi E (2006) Ferric iron in Al-bearing post-perovskite. Geophys Res Lett 33. doi:10.1029/2006GL025858

  • Sinmyo R, Hirose K, Nishio-Hamane D, Seto Y, Fujino K, Sata N, Ohishi Y (2008) Partitioning of iron between perovskite/post-perovskite and ferropericlase in the lower mantle. J Geophys Res 113:B11204. doi:10.1029/2008JB005730

    Article  Google Scholar 

  • Speziale S, Zha CS, Duffy TS, Hemley RJ, Mao HK (2001) Quasi- hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. J Geophys Res 106:515–528

    Article  Google Scholar 

  • Speziale S, Lee VE, Clark SM, Lin JF, Pasternak MP, Jeanloz R (2007) Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowustites and implications for the seismological properties of the Earth’s lower mantle. J Geophys Res 112:B10212. doi:10.1029/2006JB004730

    Article  Google Scholar 

  • Thompson JB (1967) Thermodynamic properties of simple solutions. In: Abelson PH (ed) Researches in geochemistry. Wiley, New York, p 340

    Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet Sci Lett 224:241–248

    Article  Google Scholar 

  • Yamazaki D, Karato S (2001) Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am Mineral 86:385–391

    Google Scholar 

  • Yoshino T, Yamazaki D, Ito E, Katsura T (2008) No interconnection of ferro-periclase in post-spinel phase inferred from conductivity measurement. Geophys Res Lett 35:L22303. doi:10.1029/2008GL035932

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Young Scientists (Start-up) to T. S. (no. 19840007) and by a Grant-in-Aid for Scientific Researches to E. O. (No. 18104009) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government, and was conducted as a part of the Global Center-of-Excellence program “Global Education and Research Center for Earth and Planetary Dynamics”. This work was partly supported by the Nanotechnology Support Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Sakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, T., Ohtani, E., Terasaki, H. et al. Fe–Mg partitioning between post-perovskite and ferropericlase in the lowermost mantle. Phys Chem Minerals 37, 487–496 (2010). https://doi.org/10.1007/s00269-009-0349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0349-4

Keywords

Navigation