Skip to main content
Log in

An XPEEM study of structural cation distribution in swelling clays. I. Synthetic trioctahedral smectites

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

X-PEEM images and XPS were collected on isolated layers of three synthetic swelling clays, one hectorite and two saponites with various charge, recording the Si(2p), Al(2p) and Mg(2p) core level spectra from the clay sheets. Spectra were fitted to determine the different components of the core levels. Due to their large full width at half maximum, Si XPS spectra were fitted using two to three doublets. It appears that, for a given clay mineral, Si, Al and Mg binding energies (BE) were constant, for all the observed layers. However, variations of the Si BE were observed depending on the nature of the mineral investigated. The various components obtained from the fit of Si spectra could be assigned to different substitution rates; binding energy shifting to lower values with substitution increase in the layer. Furthermore, variations in Si BE according to charge location were assigned to the influence of exchangeable cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bauer E (1994) Low energy electron microscopy. Rep Prog Phys 57:895–938. doi:10.1088/0034-4885/57/9/002

    Article  Google Scholar 

  • Beermann T, Brockamp O (2005) Structure analysis of montmorillonite crystallites by convergent-beam electron diffraction. Clay Miner 40:1–13. doi:10.1180/0009855054010151

    Article  Google Scholar 

  • Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, Amsterdam

    Google Scholar 

  • Besson G, Drits VA (1997) Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: the main factors affecting OH vibrations and quantitative analysis. Clays Clay Miner 45:170–183. doi:10.1346/CCMN.1997.0450205

    Article  Google Scholar 

  • Besson G, Bookin AS, Dainyak LG, Rautureau M, Tsipursky SI, Tchoubar C, Drits VA (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. J Appl Cryst 16:374–383. doi:10.1107/S0021889883010651

    Article  Google Scholar 

  • Besson G, Drits VA, Dainyak LG, Smoliar BB (1987) Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data. Clay Miner 22:465–478. doi:10.1180/claymin.1987.022.4.10

    Article  Google Scholar 

  • Bihannic I, Michot LJ, Lartiges B, Vantelon D, Labille J, Thomas F, Susini J, Salomé M, Fayard B (2001) First direct visualization of oriented mesostructures in clay gels by synchrotron based X-ray fluorescence microscopy. Langmuir 17:4144–4147. doi:10.1021/la0101494

    Article  Google Scholar 

  • Bonnin D, Calas G, Suquet H, Pezerat H (1985) Sites occupancy of Fe3+ in Garfield nontronite: a spectroscopic study. Phys Chem Miner 12:55–64

    Google Scholar 

  • Butruille JR, Michot LJ, Barres O, Pinnavaia TJ (1993) Fluorine-mediated acidity of alumina-pillared fluorohectorite. J Catal 139:664–678. doi:10.1006/jcat.1993.1058

    Article  Google Scholar 

  • Circone S, Navrotsky A, Kirkpatrick RJ, Graham CM (1991) Substitution of Al in phlogopite: mica characterization, unit-cell variation, 27Al and 29Si MAS-NMR spectroscopy, and Al–Si distribution in the tetrahedral sheet. Am Mineral 76:1485–1501

    Google Scholar 

  • Cuadros J, Dudek T (2006) FTIR investigation of the evolution of the octahedral sheet of kaolinite-smectite with progressive kaolinization. Clays Clay Miner 54:1–11. doi:10.1346/CCMN.2006.0540101

    Article  Google Scholar 

  • Cuadros J, Sainz-Diaz CI, Ramirez R, Hernandez-Laguna A (1999) Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of FTIR, 27Al MAS NMR and reverse Monte Carlo simulations. Am J Sci 299:289–308. doi:10.2475/ajs.299.4.289

    Article  Google Scholar 

  • Cumspon PJ, Seah M (1997) Elastic scattering corrections in AES and XPS. 2. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments. Surf Interface Anal 25:430–446. doi:10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO;2-7

    Article  Google Scholar 

  • Dainyak LG, Drits VA, Zviagina BB, Lindgreen H (2006) Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rocks shales. Am Mineral 91:589–603. doi:10.2138/am.2006.2047

    Article  Google Scholar 

  • Dove MT, Thayaparam S, Heine V, Hammonds KD (1996) The phenomenon of low Al-Si ordering temperatures in aluminosilicate framewoerk structures. Am Mineral 81:349–362

    Google Scholar 

  • Drits VA, Dainyak LG, Muller F, Besson G, Manceau A (1997) Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mössbauer and EXAFS spectroscopies. Clay Miner 32:153–179. doi:10.1180/claymin.1997.032.2.01

    Article  Google Scholar 

  • Drits VA, Sakharov BA, Dainyak LG, Salyn AL, Lindgreen H (2002) Structural and chemical heterogeneity of illites-smectites from upper jurassic mudstones of east greenland related to volcanic and weathered parent rocks. Am Mineral 87:1590–1607

    Google Scholar 

  • Duc TM (1998) Analyse de surface par ESCA. Analyse élémentaire et applications In: Techniques Se (ed) Techniques de l’ingénieur, traité Analyse et Caractérisation. pp 1–30

  • Ebina T, Iwasaki T, Chatterjee A, Katagiri M, Stucky GD (1997) Comparative study of XPS and DFT with reference to the distributions of Al in tetrahedral and octahedral sheets of phyllosilicates. J Phys Chem B 101:1125–1129. doi:10.1021/jp9622647

    Article  Google Scholar 

  • Ebina T, Iwasaki T, Omodera Y, Chatterjee A (1999) A comparative study of DFT and XPS with reference to the adsorption of caesium ins in smectites. Comput Mater Sci 14:254–260. doi:10.1016/S0927-0256(98)00116-5

    Article  Google Scholar 

  • Farmer VC, Russel JD (1964) The infra-red spectra of layer silicates. Spectrochim Acta [A] 20:1149–1173

    Google Scholar 

  • Gilbert B, Frazer BH, Naab F, Fournelle J, Valley JW, de Stasio G (2003) X-ray absorption spectroscopy of silicates for in situ sub-micrometer mineral identification. Am Mineral 88:763–769

    Google Scholar 

  • Gonzalez-Elipe AR, Espinos JP, Munuera G, Sanz J, Serratosa JM (1988) Bonding-state characterization of constituent elements in phyllosilicate minerals by XPS and NMR. J Phys Chem 92:3471–3476. doi:10.1021/j100323a031

    Article  Google Scholar 

  • Gota S, Gunnella R, Wu Z-Y, Jezequel G, Natoli CR, Sebilleau D, Bullock EL, Proix F, Guillot C, Quemerais A (1993) Chemical-shift low-energy photoelectron diffraction: a determination of the InP(110) clean surface structural relaxation. Phys Rev Lett 71:3387–3390. doi:10.1103/PhysRevLett.71.3387

    Article  Google Scholar 

  • He H, Cheng C-F, Seal S, Barr TL, Klinowski J (1995) Solid-state NMR and ESCA studies of the framework aluminosilicate analcime and its gallosilicate analogue. J Phys Chem 99:3235–3239. doi:10.1021/j100010a039

    Article  Google Scholar 

  • He H, Zhou Q, Frost RL, Wood BJ, Duong LV, Kloprogge JT (2007) A X-ray photoelectron spectroscopy study of HDTMAB distribution within organoclays. Spectrochim Acta [A] 66:1180–1188. doi:10.1016/j.saa.2006.06.005

    Article  Google Scholar 

  • Herreros B, He H, Barr TL, Klinowski J (1994) ESCA studies of framework silicates with the sodalite structure. 1. Comparison of purely siliceous sodalite and aluminoslicate sodalite. J Phys Chem 98:1302–1305. doi:10.1021/j100055a042

    Article  Google Scholar 

  • Lagaly G, Fernandez Gonzalez M, Weiss A (1976) problems in layer-charge determination of montmorillonites. Clay Miner 11:173–187. doi:10.1180/claymin.1976.011.3.01

    Article  Google Scholar 

  • Locatelli A, Bianco A, Cocco D, Cherifi S, Heun S, Marsi M, Pasqualetto M, Bauer E (2003) High lateral resolution spectroscopic imaging of surfaces: the undulator beamline “nanospectroscopy” at Elettra. J Phys IV 104:99–102. doi:10.1051/jp4:200300038

    Article  Google Scholar 

  • Locatelli A, Aballe L, Mentes TO, Kiskinova M, Bauer E (2006) Photoemission electron microscopy with chemical sensitivity: SPELEEM methods and applications. Surf Interface Anal 38:1554–1557. doi:10.1002/sia.2424

    Article  Google Scholar 

  • Manceau A (1990) Distribution of cations among the octahedra of phyllosilicates: insight from EXAFS. Can Mineral 28:321–328

    Google Scholar 

  • Manceau A, Chateigner D, Gates WP (1998) Polarized EXAFS, distance-valence least-squares modeling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite. Phys Chem Miner 25:347–365. doi:10.1007/s002690050125

    Article  Google Scholar 

  • Michot LJ, Villieras F (2002) Assessment of surface energetic heterogeneity of synthetic Na-Saponites. The role of layer charge. Clay Miner 37:39–57. doi:10.1180/0009855023710016

    Article  Google Scholar 

  • Michot LJ, Bihannic I, Porsch K, Maddi S, Baravian C, Mougel J, Levitz P (2004) Phase diagrams of Wyoming Na-montmorillonite clay. Influence of particle anisotropy. Langmuir 20:10829–10837. doi:10.1021/la0489108

    Article  Google Scholar 

  • Michot LJ, Bihannic I, Pelletier M, Rinnert E, Robert J-L (2005) Hydration and swelling of synthetic Na-saponites: influence of layer charge. Am Mineral 90:166–172. doi:10.2138/am.2005.1600

    Article  Google Scholar 

  • Muller F, Besson G, Manceau A, Drits VA (1997) Distribution of isomorphous cationswithin octahedral sheets in montmorillonite from Camp-Bertaux. Phys Chem Miner 24:159–166. doi:10.1007/s002690050029

    Article  Google Scholar 

  • Okada K, Kameshima Y, Yasumori A (1998) Chemical shifts of silicon X-ray photoelectron spectra by polymerization structures of silicates. J Am Ceram Soc 81:1970–1972

    Article  Google Scholar 

  • Palin EJ, Dove MT, Redfern SAT, Bosenick A, Sainz-Diaz CI, Warren MC (2001) Computational study of tetrahedral Al-Si ordering in muscovite. Phys Chem Miner 28:534–544. doi:10.1007/s002690100184

    Article  Google Scholar 

  • Prost R (1975) Etdude de l’hydratation des argiles : interactions eau-minéral et mécanisme de la rétention de l’eau. II-Etude d’une smectite (Hectorite). Ann Agron 26:463–535

    Google Scholar 

  • Sainz-Diaz CI, Cuadros J, Hernandez-Laguna A (2001) Analysis of cation distribution in the octahedral sheet of dioctahedral 2:1 phyllosilicates by using inverse Monte Carlo method. Phys Chem Miner 28:445–454. doi:10.1007/s002690100171

    Article  Google Scholar 

  • Sainz-Diaz CI, Palin EJ, Hernandez-Laguna A, Dove MT (2004) Effect of the tetrahedral charge on the order–disorder of the cation distribution in the octahedral sheet of smectites and illites by computational methods. Clays Clay Miner 52:357–374. doi:10.1346/CCMN.2004.0520311

    Article  Google Scholar 

  • Sanz J, Robert J-L, Diaz M, Sobrados I (2006) Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates. Am Mineral 91:544–550. doi:10.2138/am.2006.1850

    Article  Google Scholar 

  • Schroeder PA, Pruett RJ (1996) Fe ordering in kaolinite: insights from 29Si and 27Al MAS NMR spectroscopy. Am Mineral 81:26–38

    Google Scholar 

  • Seah MP, Dench WA (1979) Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal 1:2–11. doi:10.1002/sia.740010103

    Article  Google Scholar 

  • Seyama H, Wang D, Soma M (2004) X-ray photoelectron microscopic imaging of the chemical bonding state of Si in a rock sample. Surf Interface Anal 36:609–612. doi:10.1002/sia.1784

    Article  Google Scholar 

  • Shivaprasad SM, Paliwal VK, Chaudhuri A (2004) The evolution of the Sb/Si interface at room temperature on the Si(111)-(7×7) and the Si(100)-(2×1) reconstructed surfaces. Appl Surf Sci 237:93–98. doi:10.1016/j.apsusc.2004.06.082

    Article  Google Scholar 

  • Sieger MT, Miller T, Chiang T-C (1995) Site-dependent fine structure in photoemission branching ratios. Phys Rev Lett 75:2043–2046. doi:10.1103/PhysRevLett.75.2043

    Article  Google Scholar 

  • Smith AD, Schofield PF, Cressey G, Read PD (2004) The development of X-ray photo-emission electron microscopy (XPEEM) for valence-state imaging of mineral intergrowths. Mineral Mag 68:859–869. doi:10.1180/0026461046860228

    Article  Google Scholar 

  • Swiech W, Fecher GH, Ziethen C, Schmidt O, Schönhense G, Grzelakowski K, Schneider CM, Frömter R, Oepen HP, Kirschner J (1997) Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity. J Electron Spectrosc Relat Phenom 84:171–188. doi:10.1016/S0368-2048(97)00022-4

    Article  Google Scholar 

  • Timon V, Sainz-Diaz CI, Botella V, Hernandez-Laguna A (2003) Isomorphous cation substitution in octahedral phyllosilicates by means of ab inito quantum mechanical calculations on clusters. Am Mineral 88:1788–1795

    Google Scholar 

  • Tsipursky SI, Drits VA (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner 19:177–193. doi:10.1180/claymin.1984.019.2.05

    Article  Google Scholar 

  • Vantelon D, Pelletier M, Michot LJ, Barres O, Thomas F (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clay Miner 36:369–379. doi:10.1180/000985501750539463

    Article  Google Scholar 

  • Vantelon D, Montarges-Pelletier E, Michot LJ, Brois V, Pelletier M, Thomas F (2003) Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study. Phys Chem Miner 30:44–53. doi:10.1007/s00269-002-0286-y

    Article  Google Scholar 

  • Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Jansen WT, Taylor JA (1982) Auger and photoelectron line energy relationships in aluminum–oxygen and silicon–oxygen compounds. J Vac Sci Technol 21:933–944. doi:10.1116/1.571870

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Community Research Infrastructure Action under the RII3-CT-2004-506008 contract. We thank G. Cauchon and S. Brochet for the sample holders preparation. We acknowledge the staff of the nanospectroscopy beamline, A. Locatelli, T. O. Mentes, L. Aballe and M. A. Nino Orti for the experimental assistance during the synchrotron-based investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Vantelon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vantelon, D., Belkhou, R., Bihannic, I. et al. An XPEEM study of structural cation distribution in swelling clays. I. Synthetic trioctahedral smectites. Phys Chem Minerals 36, 593–602 (2009). https://doi.org/10.1007/s00269-009-0304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0304-4

Keywords

Navigation